• Title/Summary/Keyword: Driving Dynamic Characteristics

Search Result 349, Processing Time 0.025 seconds

Nonlinear Dynamic Analysis of Gear Driving System due to Transmission Error and Backlash (전달오차와 백래쉬에 의한 기어 구동계의 비선형 동특성 해석)

  • 최연선;이봉현;신용호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.69-78
    • /
    • 1997
  • Main sources of the vibration in gear driving system are transmission error and backlash. Transmission error is the difference of the rotation between driving and driven gear due to tooth deformation and profile error. Vibro-impacts induced by backlash between meshing gears lead to excessive vibration and noise in many geared rotation systems. Nonlinear dynamic characteristics of the gear driving system due to transmi- ssion error and backlash are investigated. Transmission error is calculated for spur gear. Nonlinear equation of motion for the gear driving system is developed with the calculated transmission error and backlash. Numerical analysis of the equation and the experimental results show the existence of meshing frequency, superharmonic compon- ents. Instability of the gear driving motion is found on the basis of Mathieu equation. Rattle vibration due to backlash is also discussed on the basis if nonlinear jump phenomenon.

  • PDF

Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile (H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

Dynamic analysis on belt-drive system of machine tools (공작 기계 벨트 구동계의 동적 해석)

  • Kim, S.G.;Lee, S.Y.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.104-111
    • /
    • 1995
  • The needs of ultraprecision machine tools, which manufacture and machine the high precision parts used in computers, semiconductors and othe rprecise machines, have been increased recentrly. So it is important to design the driving parts of the ultraprecision machine tools which affect significantly on the performance of them. In this paper, the dynamic analyses on the belt-drive system were studied. The correlational equations between the acoustic natural frequency and the tension of belt were derived by experiments. The dynamic delections while the dynamic loads on the motor system changed were analyzed by the finite element analysis. The nonlinear characteristics of the bearings on the dynamic performance was studied and the belt connecting the motor to the spindle of a machine tool was modeled by the truss element and the beam element.

  • PDF

A new proposal for the appropriate quality control of driven piles by using set values (최종관입량을 기준으로 한 합리적인 말뚝 시공관리 방안)

  • 이명환;홍헌성;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.51-63
    • /
    • 2000
  • Because of simplicity and easiness, dynamic pile driving formulae have long been used by most of the field engineers for pile quality control purposes. Yet their reliability have been repeatedly reported unsuitable and the results can lead to significant errors. According to the research results by the authors, the two most important sources of unreliability of dynamic pile driving formulae are uncertainty in the estimation of hammer efficiency and time dependent characteristics of pile bearing capacity. Based on this finding a new method is proposed. By using the actual value of hammer efficiency the pile bearing capacity at the time of driving could be reasonably estimated. By performing restrike test sometime after pile installation, time effect coefficient could be determined. The effectiveness of the proposed method was proven in the actual construction project.

  • PDF

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

The Study on Driving Characteristics of Crane Wheel Shape (크레인 휠 형상에 따른 구동 특성에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.185-195
    • /
    • 2000
  • This pacer studied on the lateral motion and yaw motion of the gantry crane which is used for the automated container terminal with two driving wheel types. Though several problems are occcurred in driving of gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operation. There are two types, cone and flat t y pin driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane with two driving wheel types are derived. Then, we investigate the driving characteristics of gantry crane. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and yaw angle of the gantry crane. The simulation result of the driving mechanism using the Runge-Kutta Method is presented in this paper.

  • PDF

A Study on Characteristics of Driving Control of Crane (크레인의 구동제어 특성에 관한 연구)

  • 이형우;박찬훈;김두형;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.545-550
    • /
    • 2001
  • This paper studied on the lateral motion and yaw motion of the gantry crane that is used for the automated container terminal. Though several problems are occurred in driving of the gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operator. There are two types, cone and flat type in driving wheel shape. In cone type, the lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of two driving wheels are derived. Then, we investigate the driving characteristics of gantry crane. In this study, the proposed controller, based on Model Based Controller, is used to control the lateral displacement and yaw angle of the gantry crane. And the availability of the proposed controller is showed through the comparison with the result of the proposed controller and PD controller. The simulation results of the driving mechanism, using the Runge-Kutta Method that is one of the numerical analysis methods, are presented in this paper.

  • PDF

A Study on the Analysis of the Shift Characteristics and the Driving Comfort for the Parallel Type hybrid Drivertrain System for Transit Bus equipped AMT (자동화 변속기를 장착한 버스용 병렬형 하이브리드 동력전달계의 변속 특성 해석과 승차감에 관한 연구)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.136-148
    • /
    • 1999
  • Detailed mathematical models of hybrid drivertrain components are presented and numerical simulations are carried out to analyze the shift characteristics and to improve the driving comfortability when the hybrid drivetrain is applied at the vehicle . Theoretical results are compared with experimental ones from the dynamometer as same condition in order to prove the appropriateness of modeling . Adding the vehicle body modeling, included in the suspension and the engine mount, it is possible to predict the dynamic behavior and shift characteristics more actually when shifts are occurred by automated manual transmission(AMT). these additional results are also compared with the same simulation ones of internal combustion engined vehicle equipped conventional manual transmission. Hence, it can be expected that the hybrid vehicle with AMT has a good shift quality.

  • PDF

Path Planning for the Shortest Driving Time Considering UGV Driving Characteristic and Driving Time and Its Driving Algorithm (무인 주행 차량의 주행 특성과 주행 시간을 고려한 경로 생성 및 주행 알고리즘)

  • Noh, Chi-Beom;Kim, Min-Ho;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • $A^*$ algorithm is a global path generation algorithm, and typically create a path using only the distance information. Therefore along the path, a moving vehicle is usually not be considered by driving characteristics. Deceleration at the corner is one of the driving characteristics of the vehicle. In this paper, considering this characteristic, a new evaluation function based path algorithm is proposed to decrease the number of driving path corner, in order to reduce the driving cost, such as driving time, fuel consumption and so on. Also the potential field method is applied for driving of UGV, which is robust against static and dynamic obstacle environment during following the generated path of the mobile robot under. The driving time and path following test was occurred by experiments based on a pseudo UGV, mobile robot in downscaled UGV's maximum and driving speed in corner. The experiment results were confirmed that the driving time by the proposed algorithm was decreased comparing with the results from $A^*$ algorithm.

Driving and Swing Analysis of a Crawler Type Construction Equipment Using Flexible Multibody Dynamics (탄성 다물체 해석기법을 이용한 크롤러형 건설장비의 주행 및 선회 동특성 해석)

  • 김형근;서민석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.101-109
    • /
    • 1997
  • A tool for the dynamic simulation and design technique of the excavator plays an important role in the prediction of dynamic behavior of the excavator in the initial design stage. In this paper, a flexible multibody dynamic analysis model including track of the crawler type excavator is developed using DADS and ANSYS. Through the driving simulation of the excavator travelling over rough road track, frequency characteristics of the upper frame and cabin are obtained, and the reaction forces acting on the track rollers are also presented for the fatigue life estimation. The effect of boom vibration modes on the joint reaction forces and accelerations is presented from the swing simulation.

  • PDF