• Title/Summary/Keyword: Driving Condition

Search Result 983, Processing Time 0.025 seconds

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF

Design of an Automatic Winch System for Small Fishing Vessel (소형 어선의 자동 권양 윈치시스템 설계)

  • 이대재;김진건;김병삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A small hydraulic winch system with an automatic tension control unit was designed to improve the work efficiency of coastal small vessels and the dynamic response characteristics of the winch system operated in the open loop condition was investigated. The inlet and the outlet pressures in hydraulic motor, the torque and the rotating speed of winch drum were measured as a function of time, and the behaviour in autotension mode for stepped load changes was analyzed. The results obtained are summarized as follows : 1. The developed winch system for coastal small vessels will result in better fishing with improved efficiency and lower manpower consumption by remote control of winch system. 2. The rotating delay times of winch drum for on/off operations of solenoid valve were 0.09 see at CW mode and 0.04 sec at CCW mode, respectively. After the solenoid valve was controlled, response characteristics were unstable slightly but showed good tracking behaviour over short time. 3. The driving torque of winch system in autotension mode was kept almost constant of 55.9 kgf·m, and 11.1 then the rotating speed of winch drum was kept almost constant of 5.1 rpm in the larger torque than 55.9 kgf·m and 11.1 rpm in the lower torque than that. 4. The 5% settling times in the transient response characteristics of autotension mode under rapid increasing and decreasing conditions of load were 0.12 sec and 0.2 sec, respectively, and then the rotating speeds were 11 rpm and 5.3 rpm, respectively. 5. The tracking behaviour of torque and rotating speed by remote control operation were stable within 0.23 sec at CW mode and 0.37 sec at CCW mode, respectively.

  • PDF

Parameter Calibration of Car Following Models Using DGPS DATA (DGPS 수신장치를 활용한 차량추종 모형 파라미터 정산)

  • Kim, Eun-Yeong;Lee, Cheong-Won;Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.17-27
    • /
    • 2006
  • Car following model is a theory that examines changes of condition and interrelationship of acceleration deceleration. headway, velocity and so on closely based on the hypothesis that the Posterior vehicle always follows the preceding vehicle. Car following mode) which is one of the research fields of microscopic traffic flow was first introduced in 1950s and was in active progress in 1960s. However, due to the limitation of data gathering the research depression was prominent for quite a while and then soon was able to tune back on track with development in global positioning system using satellite and generalization of computer use. Recently, there has been many research studies using reception materials of global Positioning system(GPS). Introducing GPS technology to traffic has made real time tracking of a vehicle position possible. Position information is sequential in terms of time and simultaneous measurement of several vehicles in continuous driving is also practicable. Above research was focused on judging whether it is feasible to overcome the following model research by adopting the GPS reception device that was restrictively proceeded due to the limitation of data gathering. For practical judgment, we measured the accuracy and confidence level of the GPS reception devices material by carrying out a practical experiment. Car following model is also being applied in simulations of traffic flow analysis, but due to the difficulty of estimating parameters the basis of the above result. it is our goal to produce an accurate calibration of car following model's parameters that is suitable in this domestic actuality.

Process Optimization of ITO Film on PC Substrate Deposited by In-line Sputtering Method for a Resistive-type Touch Panel (인라인 스퍼터링에 의한 저항막 방식 터치패널용 ITO 기판 제조공정 최적화 기술)

  • Ahn, M.H.;Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.440-446
    • /
    • 2009
  • Indium tin oxide(ITO) substrate is one of the key components of the touch panel and its sputtering process is dependent on the characteristics of various touch panel, such as driving type, size of panel, and the intended use. In this study, we optimized the sputtering condition of ITO film on polycarbonate(PC) by using in-line sputtering method for the application to resistive type touch panel. We varied the $O_2$/Ar gas ratio, sputtering power, pressure and moving speed of substrate to deposit ITO films at room temperature with the base vacuum of $1{\times}10^{-6}\;torr$. The sheet resistance and its uniformity, the transmittance, the thickness of the ITO film on PC substrate are investigated and analyzed. The optimized process parameters are as follows : the sheet resistance is $500{\pm}50\;{\Omega}$/□, the uniformity of sheet resistance is lower than 10%, the transmittance is higher than 87 % at 550nm, and the thickness is about 120~250. The optimized deposition conditions by in-line sputtering method can be applied to the actual mass production for the ITO film manufacturing technology.

Exploring the Impacts of Autonomous Vehicle Implementation through Microscopic and Macroscopic Approaches (자율주행차량 도입에 따른 교통 네트워크의 효율성 변화 분석연구)

  • Yook, Dong-Hyung;Lee, Baeck-Jin;Park, Jun-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.14-28
    • /
    • 2018
  • Thanks to technical improvement on the vehicle to vehicle communication and the intelligent transportation system, gradual introduction of the autonomous vehicles is expected soon in the market. The study analyzes the autonomous vehicles' impacts on the network efficiencies. In order to measure the network efficiencies, the study applies the sequential procedures that combines the microscopic and macroscopic simulations. The microscopic simulation attends to the capacity changes due to the autonomous vehicles' proportions on the roadway while the macroscopic simulation utilizes the simulation results in order to identify the network-wide improvement. As expected, the autonomous vehicles efficiently utilizes the existing capacity of the roadway than the human driving does. Particularly, the maximum capacity improvements are expected by the 190.5% on the expressway. The significant capacity change is observed when the autonomous vehicles' proportions are about 80% or more. These improvements are translated into the macroscopic model, which also yields overall network efficiency improvement by the autonomous vehicles' penetration. However, the study identifies that the market debut of the autonomous vehicles does not promise the free flow condition, which implies the possible needs of the system optimal routing scheme for the era of the autonomous vehicles.

Study on Ship Operational Ability under the Influence of Alcohol (승선 중 알코올이 선박운항능력에 미치는 영향에 관한 연구)

  • Yang, Chan-Su;Yang, Young-Hoon;Kim, Hong-Tae;Gong, In-Young;Lee, Bong-Wang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Based on the previous studies on alcohol effects on human behavior and performance in transportation system such as airplane and car driving, the alcohol exposure before and on watch of a ship has a great influence on subsequent behavior. In this paper, to examine the drinking status of officers on board multiple choice questionnaires are circularized under instruction and surveyed for 118 officers. According to the results of the questionnaire survey on alcohol dependance (Alcoholism) that was invested by WHO, over 27% of those surveyed represented alcohol abuse symptoms. In addition to that, the existing state and awareness for on-board-drinking was summarized to make a scenario of drunk-operation with a ship handling simulator to investigate the effect of alcohol (0.08 g% blood alcohol concentrations) on ship operational performance. A main effect for alcohol was found indicating that ship operational performance was comparatively impaired by this alcohol relative to performance in the non-alcohol condition. The results of this research can be applied to minimize marine acciedents as basic data.

  • PDF

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism (1) Finite Element Analysis and Numerical Solution (4절 링크 기구의 동적 변형 해석 (I) 유한 요소 해석 및 수치해)

  • Cho, Sun-Whi;Park, Jong-Keun;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.737-752
    • /
    • 1992
  • Analysis of elasto-dynamic deformation of flexible linkage mechanism is conducted using the finite element method. The equations of motion of the system are derived from the static structural problem in which dynamic inertia, gravitational and driving forces are treated as external loads. Linear spring model is included in the formulation of equation of motions to represent the effects of deformation of elastic bearings of revolute joints on the system behavior. A computer program is constructed and applied to analyze a specific crank-lever 4-bar mechanism. The algorithm of the program is as follows. First, the natural frequencies and the mode shapes of the system are calculated by solving the eigenproblem of the mechanism system which can be considered as a static structure by assuming the input shaft (crank shaft) to be fixed at any given configuration of mechanism. And finally, the elasto-dynamic deformation of the whole system is obtained using mode superposition method for the case of constant input speed. The effect of geometric stiffness on the mechamism is included in the program with the axial forces of links obtained through the quasi-static displacement analysis. It is found that the geometric stiffness exerts an important effect upon the elasto-dynamic behavior of the flexible linkage mechanism. Elastic deformation of bearing lowers the natural frequencies of the system, resulting smaller elastic displacement at the mid-point of the links and bigger elestic displacement at the ends of the links than rigid bearing. The above investigation of flexible linkage mechanism shows that the effects of the elastic deformation of bearing on the mechanism should be considered to design the mechanism which satisfies more preciously the purpose and the condition of design.

Refurbishment of a 3.6 m earth-pressure balanced shield TBM with a domestic cutterhead and its field verification (국산 커터헤드를 장착한 직경 3.6 m 토압식 쉴드TBM의 제작과 현장적용성 분석)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Choi, Soon-Wook;Kang, Tae Ho;Kwon, Jun-Yong;Shin, Min-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.457-471
    • /
    • 2015
  • A domestic cutterhead with the diameter of 3.6 m was designed and manufactured in this study. Then, it was attached to an existing earth-pressure balanced shield TBM to excavate a cable tunnel with the length of 1,275 m. Especially, the procedures for TBM cutterhead design and its corresponding performance prediction were also summarized. From field data analyses of the refurbished shield TBM, its maximum advance rate was recorded as 14.4 m/day. Penetration depths of disc cutters were found to be approximately 4 mm/rev, which is equal to the maximum penetration depth designed for the strongest rock strength condition in the target tunnel. Every TBM operating thrust and cutter normal force during TBM driving was much smaller than their corresponding maximum capacities. When cutter acting forces recorded in the field were analyzed, their prediction errors by the CSM model were very high for weak rock conditions. In addition, rock strength showed very close relationships with cutter normal force and penetration depth.