• Title/Summary/Keyword: Driving Condition

Search Result 983, Processing Time 0.022 seconds

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

The Study on the Assesment Greenhouse Gases and Air Pollutants of Diesel Vehicle according to Ambient Temperature and Driving Condition (대기온도와 운전조건에 따른 디젤자동차의 차량 온실가스 및 대기오염물질 배출특성에 관한 연구)

  • Kim, Ki-Ho;Kim, Sung-Woo;Lee, Min-Ho;Oh, Sang-Gi;Lee, Seung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • As the interest on the air pollution is gradually risen up at home and abroad, their vehicle emission regulations have been reinforcing by steps. PM regulation was also reinforced 4times for the last 13years and has been applied to SI vehicles after EURO 5. Additionally, knowing that small particles of PM can easily penetrate deep into lungs PM number was added on the regulation from EURO5+ and is applied to CI vehicles. Also, PN regulation is going to be applied to SI vehicles. But, because the regulation is appled to only a general test mode of each countries that is performed at $25{\pm}5^{\circ}C$, it is unclear whether the regulation can work on the other ambient temperature conditions or not. In this paper, to know that exhaust emission characteristics at the special conditions CI vehicles(CRDi w, w/o DPF) were tested using 5-cycle mode, NEDC mode at 5-ambient temperatures (35, 25, 0, -7 and -15) and the exhaust emission test results were discussed. The results show that the vehicle with DPF emits much low PM(and PM number) on all of the test mode. However, NOx of the other mode was emitted higher than regulation mode. Also. NOx was sharply increased according to decreasing Ambient Temperature.

Development Status of Korea Accelerated Loading and Environment Simulator (KALES) (한국형 포장가속시험시설의 개발현황)

  • Yang, Seong-Cheol;Yu, Tae-Seok;Eom, Ju-Yong
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.139-148
    • /
    • 2000
  • Currently existing Accelerated Pavement Testing (APT) systems developed in several countries have been employed mainly to test the performance of asphalt pavement. Meanwhile, the length of concrete pavement is similar to that of asphalt pavement in expressways of Korea. and is expected to increase due to its durability and compatibility to our weather condition. To meet the society's demand of having our own APT system which can examine the long-term performance of concrete pavement, a contract study to develop Korea Accelerated Loading and Environment Simulator (KALES) for concrete pavement has been performed for 3 years from 1997 through 1999. Through the project, a detailed design was Peformed for the KALES system in which the entire structure of KALES, loading mechanism, wandering mechanism, suspension system, driving system were proposed. Also in advance to design a full-scale KALES system, a sample scale model was manufactured and tested for operating motion and force distribution. It is evident that the proposed prototype KALES system will provide higher degree of traffic simulation and durable operation, based on the satisfactory fatigue analysis.

  • PDF

A Study on Human-friendly Path Decision using Fuzzy Logic (퍼지 로직을 이용한 인간 친화적인 경로 설정에 관한 연구)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.616-621
    • /
    • 2006
  • Recently many cars are equipping a navigation system. The main purpose of the early system guides a user through the route. A navigation system includes various abilities by development of various technologies and it has given more convenience to user. It can play various records on the tape and announces which are useful information about each road. Also it can use various multi-media contents by DMB device during driving. However, guide function of basic and important road in the navigation system has not grown greatly yet. In this paper, we proposed recommendation method of human-friendly road considering user's condition through various information of outside environment, user's velocity intention, a driver's emotion and a preference of the road. Modules consists of hierarchical structure that can easily correct and add each algorithm and those use fuzzy logic algorithm.

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.

A Review on Smart Two Wheeler Helmet with Safety System Using Internet of Things

  • Ilanchezhian, P;Shanmugaraja, P;Thangaraj, K;Aldo Stalin, JL;Vasanthi, S
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.11-16
    • /
    • 2021
  • At the present time, the number of accidents has enlarged speedily and in country like India per day there are about 204 accidents occurred. Accidents of two-wheeler compose a foremost segment of every accident and it can be true for the reason that two-wheelers like bikes not able to produce as many as security measurements normally incorporated in cars, truks and bus etc. General main rootcost of the two-wheeler accidents happen only when people community not remember to wearing a device helmet and during the driving time feels like sleep condition, alcohol disbursement, many of the drivers doesn't know heavy vehicles like Loory and buses approaching into very closer to their two wheelers, contravention of two wheelers in traffic rules and regulations. Let's overcome the above situations; our important objective is to develop an intelligent system device that can successfully facilitate in avoidance of every kind of problems. Suppose any of the above stated situations occurs, at that moment how system device identify and represents the commanders and community, and finally the stated situation be able to taken care of straight away without any further delay. A smart intelligent helmet system is a defending head covering used by rider for making bike riding safer than earlier. This is finished by incorporating sophisticated features like detecting the usage of helmet by the rider, connected Bluetooth module in helmet. In order to maintain the temperature inside the helmet device we need to include CPU fan module inside the device. RF based helmet prevents road accidents and identify whether people community is not using a component helmet or used. Main responsibility of the system is to detect accidents by vibration sensors, accelerometers and also with the help of modules global positioning system and global system for mobile commnicaiton module. A wireless communication device used to discover the accident area site location and likewise notifying the two-wheeler drived people's relatives and short message text information passed to the positioned hospitals.

The Current Situation and Prospect of Safety Education Contents based on VR (VR기반 안전 교육콘텐츠 현황과 전망)

  • Lee, Young-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1294-1299
    • /
    • 2020
  • Recently, interest in safety education based on VR has been increasing, but it started rising doubts are growing over its effectiveness. Therefore, the purpose of this thesis project is to research the current status of safety education contents based on VR and present situations and future prospects for safety education based on VR. As a result of researching about safety education contents using VR, the movement or condition of characters in the contents in the VR environment was very unnatural. Especially, in simulations such as driving a VR device, the controller was skeptical about its efficiency because the operation was different from the actual environment. As a result, we would like to make suggestions and forecasts as follows: First, the production of real and twin environment in VR should be realized. Second, the natural movement of the character should be performed. Third, various controllers should be released in VR devices. Fourth, a realistic scenario should be developed.

Analyses on Aerodynamic and Inertial Loads of an Airborne Pod of High Performance Fighter Jet (고기동 항공기 하부 장착 파드의 공력 및 관성하중 분석 연구)

  • Lee, Jaein;Shin, Jinyoung;Cho, Donghyun;Jung, Hyeongsuk;Choi, Taekyu;Lee, Jonghoon;Kim, Youngho;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • A fighter performing a reconnaissance mission is equipped with a pod that drives optical/infrared sensors for acquiring and identifying target information on the lower part of the fuselage. Due to the nature of the reconnaissance mission, the fighter performs high speed evasive maneuvers, and the resulting load should be considered importantly for the development of the pod. This paper concerns a numerical investigation into the inertial and aerodynamic loads of the airborne pod of high performance aircrafts. For the aerodynamic load analysis, the pylon and pod shapes are added to the fighter 3D model, and the commercial software was used for static and dynamic analysis. Considering the practical mission conditions, the common/extreme conditions were established respectively in the static and dynamic situations of pods and the driving torque could be tripled under dynamic conditions. In the analysis of inertia load, a 3-DOF model considering roll and turning maneuvers was derived by the Lagrangian method, and then the numerical integration method was applied to the analysis. As a results, it was conformed that the inertia load was generally induced at a low level compared to the aerodynamic load, but depending on the unbalance mass condition of the pod, the inertia load cannot be negligible.