• 제목/요약/키워드: Driving Circuit

검색결과 856건 처리시간 0.026초

An Improvement of the Sustain-driving Circuit

  • Choi, Jeong-Pil;Park, Sang-Hyun;Jung, Woo-Chang;Cho, Kyu-Choon;Moon, Seong-Hak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1551-1554
    • /
    • 2008
  • In this paper, some important driving issues pertaining to the sustain-driving circuit are examined A new driving circuit is also proposed The new circuit is cost effective and has a simple PCB layout in comparison to the conventional one. Some additional driving advantages are noted as well.

  • PDF

전압 분배용 전하펌프를 사용한 LED 구동회로 (LED Driving Circuit using Charge Pump for Voltage Distribution)

  • 윤장희;유성호;염정덕
    • 조명전기설비학회논문지
    • /
    • 제26권8호
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, a new LED driving circuit which is able to control dimming of LED is proposed using charge pump. The proposed LED driving circuit steps down the input voltage to operate LED without DC-DC converter. The operation of this driving circuit is verified by P-Spice simulation, and the characteristics of the driving circuit is measured and evaluated in the experiments. As a result, the driving circuit efficiency of 88.5[%] is obtained when all LEDs are turned on by digital control method at the highest dimming level(255/255).

Implementation of PDP Driving Circuit for AC-Type

  • Jang, Yun-Seok;Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제5권3호
    • /
    • pp.285-288
    • /
    • 2007
  • PDP(Plasma Display Panel) driving circuit requires switching devices and capacitors to stand up high voltages over 150volts. Thereby the power consumption and the cost of a PDP driving circuit increase. In this paper, a PDP driving circuit is proposed that can be operated with a lower supply voltage than the supply voltage of conventional driving circuit. The operation of the proposed driving circuit is verified by the computer simulation and experiments. PSPICE simulation and experiments results show that the output signal can drive PDP cells when the supply voltage is higher than 40volts.

Improvement of the Sustain-driving Characteristics of AC PDP by Changing the Position of the Inductor

  • Choi, Jeong-Pil;Park, Sang-Hyun;Jung, Woo-Chang;Cho, Kyu-Choon;Moon, Seong-Hak
    • Journal of Information Display
    • /
    • 제9권4호
    • /
    • pp.45-49
    • /
    • 2008
  • The characteristics of the sustain-driving circuit were examined in this paper. The sustain-driving circuit is in charge of the most important part of PDP driving because it manages most of the power consumption in the PDP. A couple of gatedriving circuits for the sustain-driving circuit were introduced in this paper, and a new driving circuit was also proposed. This new circuit is more cost-effective and has a simpler PCB layout compared to the conventional one. Some additional driving advantages were noted as well.

저소비 전력 OLED 디스플레이 구동 회로 설계 (Design of Low Power OLED Driving Circuit)

  • 신홍재;이재선;최성욱;곽계달
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.919-922
    • /
    • 2003
  • This paper presents a novel low power driving circuit for passive matrix organic lighting emitting diodes (OLED) displays. The proposed driving method for a low power OLED driving circuit which reduce large parasitic capacitance in OLED panel only use current driving method, instead of mixed mode driving method which uses voltage pre-charge technique. The driving circuit is implemented to one chip using 0.35${\mu}{\textrm}{m}$ CMOS process with 18V high voltage devices and it is applicable to 96(R.G.B)X64, 65K color OLED displays for mobile phone application. The maximum switching power dissipation of driving power dissipation is 5.7mW and it is 4% of that of the conventional driving circuit.

  • PDF

저전력화를 위한 AC형 PDP구동회로의 설계 (Design of AC PDP driving Circuit for Low Power Consumption)

  • 장윤석;최진호
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.2014-2019
    • /
    • 2006
  • PDP구동회로는 160V 이상의 고전압을 유지하기 위한 스위칭 소자와 커패시터를 필요로 한다. 이러한 고전압용 소자의 사용은 PDP 구동회로의 가격을 상승시키고 전력 소모를 증가시키는 원인이 된다. 기존의 PDP 구동회로는 3개의 공급 전압원과 16개의 스위칭 소자로 구성 되어 있다. 그러나 본 논문에서는 2개의 공급 전압원과 12개의 스위칭 노자를 사용하고, 공급 전압도 기존의 공급 전압보다 낮은 공급 전압을 사용하는 구동회로를 제안한다. 컴퓨터시뮬레이션을 통하여 입력 주파수가 70kHz에서 100kHz일 때 45V 이상의 공급전압을 사용한다면 PDP 셀 구동을 위한 충분한 크기의 신호를 얻을 수 있음을 확인하였다.

BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계 (Design of a gate driver driving active balancing circuit for BMSs.)

  • 김영희;김홍주;하윤규;하판봉;백주원
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.732-741
    • /
    • 2018
  • 여러 배터리 셀을 직렬로 연결해서 사용하는 BMS에서 사용 가능 용량을 최대화시키기 위하여 각 셀의 전압을 같도록 맞춰주는 셀 밸런싱 기술이 필요하다. 다중 권선 변압기를 사용하는 능동 셀 밸런싱 회로에서 셀 간 직접적 (direct cell-to-cell)으로 에너지를 전달하는 밸런싱 회로는 PMOS 스위치와 NMOS 스위치를 구동하기 위한 게이트 구동 칩은 PMOS 스위치와 NMOS 스위치 개수 만큼 TLP2748 포토커플러(photocoupler)와 TLP2745 포토커플러가 필요하므로 원가가 증가하고 집적도가 떨어진다. 그래서 본 논문에서는 포토커플러를 사용하여 PMOS와 NMOS 스위칭소자를 구동하는 대신 70V BCD 공정기반의 PMOS 게이트 구동회로와 NMOS 게이트 구동회로, 스위칭 시간이 개선된 PMOS 게이트 구동회로와 NMOS 게이트 구동회로를 제안하였다. 스위칭 시간이 개선된 PMOS 게이트 구동 스위치의 ${\Delta}t$는 8.9ns이고, NMOS 게이트 구동 스위치의 ${\Delta}t$는 9.9ns로 양호한 결과를 얻었다.

Design of a CMOS On-chip Driver Circuit for Active Matrix Polymer Electroluminescent Displays

  • Lee, Cheon-An;Woo, Dong-Soo;Kwon, Hyuck-In;Yoon, Yong-Jin;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • 제3권2호
    • /
    • pp.1-5
    • /
    • 2002
  • A CMOS driving circuit for active matrix type polymer electroluminescent displays was designed to develop an on-chip microdisplay on the single crystal silicon wafer substrate. The driving circuit is a conventional structure that is composed of the row, column and pixel driving parts. 256 gray scales were implemented using pulse amplitude modulation method. The 2-transistor driving scheme was adopted for the pixel driving part. The layout was carried out considering the compatibility with the standard CMOS process. Judging from the layout of the driving circuit, it turns that it is possible to implement a high-resolution display about 400 ppi resolution. Through the HSPICE simulation, it was verified that this circuit is capable of driving a VGA signal mode display and implementing 256 gray levels.

저항막식 터치 패널의 구동회로 제작 (An Implementation of Driving Circuit for Resistive Touch Panel)

  • 한형석
    • 정보통신설비학회논문지
    • /
    • 제8권1호
    • /
    • pp.36-39
    • /
    • 2009
  • In this paper, we propose a 4-wire type driving circuit for resistive touch panel which was manufactured at the lab. The circuit is designed by using the touch panel controller ADS7846 and AVR microcontroller board. The test result shows that the designed circuit can give and transmit the position information of touch panel to the computer.

  • PDF

The TROPHY (Talented Role-playing Technology with a Dual Polarity Sustainer in Hybrid Mono Board) Driving Method

  • Park, Chang-Joon;Kwak, Jong-Woon;Kim, Tae-Hyung;Park, Hyun-Il;Moon, Seong-Hak
    • Journal of Information Display
    • /
    • 제7권4호
    • /
    • pp.24-26
    • /
    • 2006
  • We have developed a new driving method named TROPHY(Talented Role-playing Technology with Dual Polarity sustainer in Hybrid Mono board). In this method, the sustain voltage is partially compared to the conventional method and the number of power sources is reduced by voltage level unification during the reset, address and sustain period. The hybrid mono board was especially developed to implement those technologies. Through this, we can lower the cost with the TROPHY compared to the conventional one. It is a suitable technology to improve the reliability of circuit and image sticking problem. We can also reduce the number of driving boards and the EMI problem compared with those of the conventional method.