• Title/Summary/Keyword: Driver interface

Search Result 272, Processing Time 0.024 seconds

A Development of Hardware-in-the-Loop Simulation System of Automatic Transmission for the Simulation of Shifting Characteristics (자동변속기의 변속특성시뮬레이션을 위한 HILS시스템 개발)

  • 정규홍;이교일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.143-151
    • /
    • 2001
  • During the past several years, the major interests of car manufacturers in development of automatic transmission were in durability and shift quality. However, a large number of researches for improving shift quality that are based on dynamic characteristics of shifting mechanism have been rarely adopted in the developing process because it is quite difficult to predict the shifting performance from the dynamics simulation. One of the important reasons for the difference between simulation results and experiments arises from the automatic transmission hydraulic system that consists of many valves with high order model and shows a lot different dynamics to temperature variation. In this work, hardware-in-the-loop simulation system for automatic transmission was developed f3r improving the accuracy of simulated result by combining the real-time simulation model with the real hydraulic system. The real-time simulation for automatic transmission model excluding hydraulic system is executed with TI's TMS320C31 DSP and the interfacing board which includes 12bit A/D, PWM signal generator and driver, serial driver ,etc is designed for acquiring the simulation data and signal interface with hydraulic system. We verified the proper operation and correctness of shifting result by comparing the off-line simulation result with that of HILS and experimental result which was performed on transmission dynamometer driven by electric motor.

  • PDF

A Microcomputer-Based Data Acquisition/Control System for Engine Performance Test(I) -Automation of Engine Performance Test and Data Acquisition- (마이크로컴퓨터를 이용한 엔진성능시험(性能試驗)의 자동화(自動化)에 관한 연구(硏究)(I) -엔진성능시험(性能試驗)과 데이터수집(蒐集)의 자동화(自動化)-)

  • Ryu, K.H.;Chung, C.J.;Park, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.7-16
    • /
    • 1987
  • This study was carried out to develop a microcomputer-based data acquisition and control system which was able to collect the data of engine performance test automatically and control the speed and load of the engine. The results of the study are summarized as follows: 1. The signal processing devices, which were able to measure cylinder pressure, coolant temperature, compositions of exhaust gas, fuel consumption, engine rpm and torque etc., were developed. The results of calibration showed that all of devices had high accuracy ranging from 0.3% to 0.69% respectively. 2. The PIA (peripheral interface adapter) for interfacing digital signal and PTM (programmable timer module) for displaying real time every 0.0408 sec were designed and developed. 3. An engine-speed control system using a stepping motor and driver was developed. The control system had the stability, and faster settling time than the manual control system. 4. The automatic control system of electrical dynamometer, which was able to control the speed and load of dynamometer, was developed with a SSD (shackleton system driver) and D/A converter. 5. The computer programs, which were able to collect and process the data of engine tests, were developed using both the machine language and BASIC.

  • PDF

A study on Korean drivers' acceptance and traffic sign conditions assessment for Speed Assistance Systems (속도제한 지원장치에 대한 운전자 인식도 및 도로환경 분석)

  • Lee, Hwa Soo;Cho, Jae Ho;Yim, Jong Hyun;Lee, Hong Guk;Chang, Kyung Jin;Yoo, Song Min
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2015
  • This study examined the Korean drivers' acceptance of SAS(Speed Assistance systems) and traffic sign conditions in Korea roads for SLIF(Speed Limit Information Function) that is a part of SAS. Exceeding the speed limit is a factor in the severity of many road accidents and SAS would help the driver to observe a speed limit by warning and/or effectively limiting the speed of the vehicle. SAS are in the initial phase in Korea, Korean drivers could not be familiar with automatical speed limiting during driving, SAS interface design would be considered to be more readily acceptable to the public. And advanced SAS have been introduced onto the market which are able to inform the driver of the current speed limit based on camera and/or digital maps based SLIF. These systems are based on external data using sensors, so environmental conditions are an important factor which could cause malfunction of SLIF functions.

A Study on One-way Communication using Commercial Off The Shelf Network Interface Card (상용 NIC 기반 단방향 통신 방법에 관한 연구)

  • Kim, Jin-hong;Na, Jung-chan;Lee, Seoung-Hyeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1295-1304
    • /
    • 2016
  • Commercial Off The Shelf(COTS) based one-way communication is advantageous in that support a low cost communication and high speed one-way communication. This paper introduce a one-way communication method, and provides a implementation method of one-way communication through modified device driver for COTS NIC. Then, To verify the advantage of the COTS based one-way communication method, We present a sample implementation using Intel 82580 NIC, and present a possibility that can contribute to the realization of one-way communication through experiments on performance and reliability.

The Design and Implementation of IoT based Remote Control System for Active Connected Cars (능동형 커넥티드 카를 위한 IoT기반 원격제어 시스템의 설계 및 구현)

  • Lee, Yun-Seop;Jang, Mun-Seok;Choi, Sang-Bang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.703-709
    • /
    • 2019
  • This paper proposes a monitoring and remote control system, an essential part of In Vehicle Infotainment (IVI) and Human Vehicle Interface (HVI) to provide safety and convenience to a driver. The system utilizes Bluetooth for a short range communication and utilizes WCDMA for a long range communication to enhance efficiency. In this paper, an integrated controller, which integrates a CAN communication module, a Bluetooth communication module, a WCDMA communication module, is designed to control a car. Also, a remote server for managing data is designed to provide real-time monitoring and remote control for a user via smart devices. Experiment results show that all the proposed remote control, driving log, real-time monitoring, and diagnostics functions are working properly. With the proposed system, a driver can drive safely by monitoring and inspecting a car before driving via smart devices, and control conveniently by controlling a car remotely.

Effect of Touch-key Sizes on Usability of Driver Information Systems and Driving Safety (터치키 크기가 운전자 정보 시스템의 사용성과 운전의 안전성에 미치는 영향 분석)

  • Kim, Hee-Hin;Kwon, Sung-Hyuk;Heo, Ji-Yoon;Chung, Min-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • In recent years, driver information systems (DIS's) became popular and the use of DIS's increased significantly. A majority of DIS's provides touch-screen interfaces because of intuitiveness of the interaction and the flexibility of interface design. In many cases, touch-screen interfaces are mainly manipulated by fingers. In this case, investigating the effect of touch-key sizes on usability is known to be one of the most important research issues, and lots of studies address the effect of touch-key size for mobile devices or kiosks. However, there is few study on DIS's. The importance of touch-key size study for DIS's should be emphasized because it is closely related to safety issues besides usability issues. In this study, we investigated the effect of touch-key sizes of DIS's while simulated driving (0, 50, and 100km/h) considering driving safety (lateral deviation, velocity deviation, total glance time, mean glance time, total time between glances, mean number of glances) and usability of DIS's (task completion time, error rate, subjective preference, NASA TLX) simultaneously. As a result, both of driving safety and usability of DIS's increased as driving speed decreased and touch-key size increased. However, there were no significant differences when touch-key size is larger than a certain level (in this study : 17.5mm).

Development of Image Quality Register Optimization System for Mobile TFT-LCD Driver IC (모바일 TFT-LCD 구동 집적회로를 위한 화질 레지스터 최적화시스템 개발)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.592-595
    • /
    • 2008
  • This paper presents development of automatic image quality register optimization system using mobile TFT-LCD (Thin Film Transistor-Liquid Crystal Display) driver IC and embedded software. It optimizes automatically gamma adjustment and voltage setting registers in mobile TFT-LCD driver IC to improve gamma correction error, adjusting time, flicker noise and contrast ratio. Developed algorithms and embedded software are generally applicable for most of the TFT-LCD modules. The proposed optimization system contains module-under-test (MUT, TFT-LCD module), control program, multimedia display tester for measuring luminance, flicker noise and contrast ratio, and control board for interface between PC and TFT-LCD module. The control board is designed with DSP and FPGA, and it supports various interfaces such as RGB and CPU.

  • PDF

Fundamental Research on Developing Additional Information System by Connecting Route Guidance Information with Turn Signal Operation (경로유도정보와 방향지시등을 연동한 추가정보 제공 시스템 개발의 기초 연구)

  • Jeon, Yong-Wook;Daimon, Tatsuru
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-71
    • /
    • 2009
  • A car navigation system as an in-vehicle route guidance information (RGI) offers a state-of-the-art technological solution to driver navigation in an unfamiliar area. However, the RGI is provided by some pre-determined options in terms of the interface between a driver and a car navigation system. Drivers occasionally pass the target intersection owing to non- or late- recognizing it. This paper is examined the position of driver's turn signal operation and intersection recognition approaching at the target intersection which is difficult to identify, as a fundamental research on developing the additional RGI connecting with the turn signal control. The field experiment was conducted to measure distances of the turn signal operation and the intersection recognition from the target intersection according to left turns, right turns, and landmarks at adjacent intersection. And glance behavior to the car navigation display was evaluated by using an eye camera. The results of the field study indicate that, most case of driving, drivers operate the turn signal until 40m to 50m before coming to the target intersection. The driving simulator experiment was performed to examine the effectiveness of providing the additional RGI when drivers did not operate the turn signal approaching at the target intersection based on the results of the field study. To provide the additional RGI is effective for the intersection identification and recognition, and expected to improve the traffic safety and the comfort for drivers.

Study on the Autonomous Vehicle Feature for the Elderly Driver (Focusing on Interaction Design) (고령운전자를 위한 자율주행차량 기능 연구 (인터랙션 디자인을 중심으로))

  • Choi, Kyu-Han
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.474-481
    • /
    • 2019
  • Korea entered the aged society in 2018 with the elderly population accounting for 14.4% of the total population, and it is expected to enter the super-aged society in 2026. In particular, it is predicted that by 2050, the elderly population will be 38% of the total population, making it one of the countries with the highest number of elderly people in the world. The increase in the elderly population is naturally leading to an increase in the number of traffic accidents among elderly drivers, in 2017, there were 26,713 elderly driver accidents over 65 years of age, with 848 people dying and 38,627 injured. Compared with 2011, the number of accidents and injuries has doubled and the number of deaths has increased 1.4 times. This study determined that the main factors of the increase in traffic accidents were the characteristics of elderly drivers, such as a decrease in visual/hearing ability, cognitive and information processing ability, and muscle strength. Therefore, it raised the necessity of autonomous vehicle(level 2) for elderly driver who can minimize the burden of driving and aimed to study the function of autonomous vehicle for elderly driver who is not familiar with new technology. Based on this, four functions of autonomous vehicles for elderly drivers were derived, such as providing clear information according to the road environment, considering physical characteristics of drivers, simplifying interface, and reinforcing in-vehicle safety devices.

Synthesizable Interface Verification for Hardware/Software Co-verification (하드웨어/소프트웨어 동시검증을 위한 합성 가능한 인터페이스 검증 기법)

  • Lee, Jae-Ho;Han, Tai-Sook;Yun, Jeong-Han
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.323-339
    • /
    • 2010
  • The complexity of embedded systems and the effort to develop them has been rising in proportion with their importance. Also, the heterogeneity of the hardware and software parts in embedded systems makes it more challenging to develop. Errors caused by hardware/software interfaces, especially, account for up to 13 percent of failures with an increasing trend. Therefore, verifying the interface between hardware and software in embedded system is one of the most important research areas. However, current approaches such as co-simulation method and model checking have explicit limitations. In this paper, we propose the synthesizable interface co-verification framework for hardware/software co-design. Firstly, we introduce the separate interface specifications for the heterogeneous components to describe hardware design and software design. Our specifications are expressive enough to describe both. We also provide the transformation rules from the software specification to the hardware specification so that the whole system can be described from the software view. Secondly, we address the solution of verifying the interface of the software and hardware design by adopting and extending existing verification-techniques and extending them. In hardware interface verification, we exploit the model checking technique and provide more efficient verification by closing the hardware design from the assumption of the software behavior which is ensured by software verification step. Lastly, we generate the interface codes such as device APIs, device driver, and device controller from the specification so that verified hardware and software codes can be synthesized without extra efforts.