• Title/Summary/Keyword: Driver's posture

Search Result 24, Processing Time 0.023 seconds

Automatic Mirror Adjustment Systems Using the Location of the Driver`s Pupils (운전자 눈동자 위치를 이용한 이러 자동 조절 시스템)

  • No, Gwang-Hyeon;Park, Gi-Hyeon;Jo, Jun-Su;Han, Min-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.523-531
    • /
    • 2001
  • This paper describes and automatic mirror adjustment system that rotates a pair of side mirrors and the room mirror of a car to the optimal position for a driver by using the locating of the driver\`s pupils. A stereo vision system measures 3D coordinates of a pair pupils by analyzing the input images of stereo B/W CCD cameras mounted on the instrument panel. this system determines the position angle of each mir-ror on the basis of information about the location of the pupils and rotates each mirror to the appropriate po-sition by mirror actuators. The vision system can detect the driver\`s pupils regardless of whether it is day-time or nighttime by virtue of an infrared light source. information about the pair of nostrils in used to im- prove the correctness of pupil detection. This system can adjust side mirrors and the room mirror automati- cally and rapidly by a simple interface regardless of driver replacement of driver\`s posture. Experiment has shown this to be a new mirror adjustment system that can make up for the weak points of previous mirror adjustment systems.

  • PDF

A Study on Level of Safety Awareness and Disaster Prevention Measures According to Driver's Characteristic (운전자 특성에 따른 안전 의식 수준과 재해예방 대책에 대한 연구)

  • Lee, Man-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.131-136
    • /
    • 2013
  • Automobile was first introduced in 1903 in South Korea, the masses of the car was carried out rapidly compared to other countries. However, many people were killed in a traffic accidents and economic loss was occurred due to the spread of the automobile. In South Korea, 2012, traffic accident occurred 223,656 times, 5,392 fatality, 344,565 injured people. In the last five years, about 224,000 accidents per year were occurring. In other words, 610 traffic accidents occur and about 15 people pass away in one day. In addition, the proportion of traffic accidents is first place in the OECD countries and it is very high in the world. Understand occurrence tendency of traffic accident, accident frequency rate of the driver who drives more than 10 years was higher than the novice driver. In addition, as a result of examining the cause of the traffic accident, breach of safe driving obligation appears highest case (125,391 times), and followed by signal violation, break safety distance. Therefore, the majority of traffic accidents occurred by the lack of safety awareness of the driver. In this study, prevent the loss of human life and property in traffic disaster, by establish disaster prevention measures that investigated by questionnaire survey and statistical data of the state of consciousness and driving posture in response to the driving history of the driver.

Comparison of Driving Posture and Sensibility Differences between Transmission Modes and the Position of Pedals (차량의 변속형태에 의한 페달 위치에 따른 운전자세 비교 및 감성차이 분석 연구)

  • Jeon, Yong-Wook;Cha, Doo-Won;Park, Peom
    • Science of Emotion and Sensibility
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • As a part of HMS(Human-Machine System), the car is very important thing in common life. It is also a significant part to study on the controllers of car that is intentively related with all sensibilities during driving. There are lots of controllers on seating buck of the car. However, there are few study on the sensibility analysis of them. Most of all, the foot controller could be easily overlooked because it could be invisible. This study was based on relationship that the controllers fitted to the driving posture in the drivers' sensibility difference of two transmission modes, automatic and manual transmission. The results show the driver's preference driving posture and sensibility in two kinds of transmission cars. Consequently, it should be designed the seating buck for two different types respectively to be taken comfort driving posture and improve the safety for drivers. Also, it could reduce the fatigue and discomfort in the task of driving. The design of the controllers strongly effects on the drivers' response time. hereby this study was accessed to the sensibility of Korean with analyzing the relationship, quantitative data, and sensibility difference between two kinds of transmission cars.

  • PDF

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.

Learning Model for Avoiding Drowsy Driving with MoveNet and Dense Neural Network

  • Jinmo Yang;Janghwan Kim;R. Young Chul Kim;Kidu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.142-148
    • /
    • 2023
  • In Modern days, Self-driving for modern people is an absolute necessity for transportation and many other reasons. Additionally, after the outbreak of COVID-19, driving by oneself is preferred over other means of transportation for the prevention of infection. However, due to the constant exposure to stressful situations and chronic fatigue one experiences from the work or the traffic to and from it, modern drivers often drive under drowsiness which can lead to serious accidents and fatality. To address this problem, we propose a drowsy driving prevention learning model which detects a driver's state of drowsiness. Furthermore, a method to sound a warning message after drowsiness detection is also presented. This is to use MoveNet to quickly and accurately extract the keypoints of the body of the driver and Dense Neural Network(DNN) to train on real-time driving behaviors, which then immediately warns if an abnormal drowsy posture is detected. With this method, we expect reduction in traffic accident and enhancement in overall traffic safety.

Development of a Test Dummy for the Evaluation of Driver's Response to Vehicle Vibration (운전 자세에서의 인체진동 평가용 시험용 더미 개발)

  • 장한기;홍석인;송치문;김기선;이정훈;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • This paper introduces a process of the development of a vibration test dummy for the posture of inclined seating. Experimental devices was invented to measure apparent mass curves on the contact point of the hip and the back of a seated human body. During the excitation of a rigid seat secured to a hydraulic exciter, force and acceleration signals were measured on the contact points to determine the apparent mass. In order to describe nonlinear characteristics of a human body, seven levels of Gaussian random signal were used for the base excitation. The modeling of the human body will be performed using measured apparent mass curves. The modeling will be done by June and the prototype of the test dummy will be invented in the following six months.

  • PDF

A Study of the Major Considerations in Slacks Design for an Automobile Driver (운전자세에 적합한 기능적 슬랙스 설계에 관한 연구)

  • 이혜진;최혜선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1514-1526
    • /
    • 2002
  • The objective of this study is to ascertain the major considerations when designing slacks for automobile drivers reflecting the elasticity of the human body posture. The scope of this study aims to find out the causes of discomfort in driving positions based on the results of a questionnaire survey and body measurements fur slacks, as well testing four types of experimental slacks for comfort and fitness when sitting on a driver's seat and in the standing position. Based on the results, a slacks design for drivers with improved comfort and fitness is suggested.

A Classification of Sitting Strategies based on Driving Posture Analysis

  • Park, Jangwoon;Choi, Younggeun;Lee, Baekhee;Jung, Kihyo;Sah, Sungjin;You, Heecheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • Objective: The present study is intended to objectively classify upper- & lower-body sitting strategies and identify the effects of gender and OPL type on the sitting strategies. Background: A sitting strategy which statistically represents comfortable driving posture can be used as a reference posture of a humanoid in virtual design and evaluation of a driver's seat. Although previous research has classified sitting strategies for driving postures in various occupant package layout (OPL) types, the existing classification methods are not objective and the factors affecting sitting strategies have not been identified. Method: Forty drivers' preferred driving postures in three different OPL types (coupe, sedan, and SUV) were measured by a motion capture system. Next, the measured driving postures were classified by K-means cluster method. Results: Sitting strategies of upper-body were classified as erect (33%), slouched (41%), and reclined (26%) postures, and those of lower-body were classified as knee bent (42%), knee extended (32%), and upper-leg lifted (26%) postures. Significant differences at ${\alpha}$ = 0.05 in the upper-body sitting strategy by gender and lower-body sitting strategy by OPL type were found. Application: Both the classified sitting strategies and the identified factors would be of use in ergonomic seat design and evaluation.

Development Software to Select Boundary Manikins for Product Evaluation: Applied to an Automobile Case (사용성 평가 전용 인체모델 선정 소프트웨어 개발 및 자동차 적용사례)

  • Lim, Young-Jae;Park, Sung-Joon;Park, Woo-Jin;Park, Jun-Soo;Jung, Eui-S.;Lim, Ik-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.831-841
    • /
    • 2010
  • Usability evaluation of physical products involves characterizing complex physical interactions between humans and products. Human models known as manikins have been widely utilized as usability evaluation tools for automobile interior package design. When combined with computer-aided design software programs, such manikins can be used to simulate driving postures and evaluate driver-interior fits early in the design process, and therefore, may greatly facilitate achieving high-quality design in a cost-efficient manner. The purpose of this study was to define a set of manikins for designing automobile interior packages for the South Korean male population. These manikins were conceptualized as "boundary" manikins, which represent individuals lacking in certain physical capacities or having usability-related issues (e.g., an individual with the 5th percentile forward reach capability, an individual with the 95th percentile shoulder width). Such boundary manikins can serve as an efficient tool for determining if an automobile interior design accommodates the majority of the population. The boundary manikins were selected from the large sample of Korean males whose anthropometric dimensions were described in the recent Size Korea anthropometric database. For each male in the database, his comfortable driving posture was represented using a kinematic body linkage model and various physical capacity measured and usability-related characteristics relevant to driver accommodation were evaluated. For each such measure, a boundary manikin was selected among the Korean males. The manikins defined in this study are expected to serve as tools for ergonomic design of automobile interior packages. The manikin selection method developed in this study was implemented as a generic software program useful for various product design applications.

A Study about Steering Wheel and Pedal Position of Industrial Vehicle by the Various Body Dimensions (다양한 인체치수에 따른 산업차량의 핸들과 폐달 위치에 관한 연구)

  • Choi, Chin-Bong;Koo, Lock-Jo;Jung, Myung-Chul;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • This study determined the optimal positions of the movable steering wheel and pedal systems of industrial vehicle by various body dimensions. The position of objects and starting driving posture were measured by Martin-type anthropometer and goniometer. The X, Y and Z axis of movable steering wheel and pedal systems were measured horizon distance from right side to left side, horizon distance from front side to rear side and vertical distance from floor to ceiling. During the experiment in order to exclude learning effectiveness with forklift driving, 27 subjects who had male not experiences in driving a forklift used in the experiment. The relationship between the position of steering wheel and driver's posture with body dimensions was analyzed by using correlation relation and paired comparison t-test based on the measured data. The pedal location in X and Z axises was not related with various body dimensions. Also, the steering wheel was different among the angles of the right elbow and shoulder depending on the various body dimensions.