• Title/Summary/Keyword: Driver's drowsiness

Search Result 39, Processing Time 0.028 seconds

HW/SW Co-design of a Visual Driver Drowsiness Detection System

  • Lai, Kok Choong;Wong, M.L. Dennis;Islam, Syed Zahidul
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.1
    • /
    • pp.31-41
    • /
    • 2013
  • There have been various recent methods proposed in detecting driver drowsiness (DD) to avert fatal accidents. This work proposes a hardware/software (HW/SW) co-design approach in implementation of a DD detection system adapted from an AdaBoost-based object detection algorithm with Haar-like features [1] to monitor driver's eye closure rate. In this work, critical functions of the DD detection algorithm is accelerated through custom hardware components in order to speed up processing, while the software component implements the overall control and logical operations to achieve the complete functionality required of the DD detection algorithm. The HW/SW architecture was implemented on an Altera DE2 board with a video daughter board. Performance of the proposed implementation was evaluated and benchmarked against some recent works.

  • PDF

Sleepiness Determination of Driver through the Frequency Analysis of the Eye Opening and Shutting (눈 개폐의 빈도수를 통한 운전자의 졸음판단 분석)

  • Gong, Do-Hyun;Kwak, Keun-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.464-470
    • /
    • 2016
  • In this paper, we propose an improved face detection algorithm and determination method for drowsiness status of driver from the opening and closing frequency of the detected eye. For this purpose, face, eyes, nose, and mouth are detected based on conventional Viola-Jones face detection algorithm and spatial correlation of face. Here the spatial correlation of face is performed by DFP(Detect Face Part) based on seven characteristics. The experimental results on Caltect face image database revealed that the detection rates of noise particularly showed the improved performance of 13.78% in comparison to that of the previous Viola-Jones algorithm. Furthermore, we analyze the driver's drowsiness determination cumulative value of the eye closed state as a function of time based on SVM (Support Vector Machine) and PERCLOS(Percentage Closure of Eyes). The experimental results confirmed the usefulness of the proposed method by obtaining a driver's drowsiness determination rate of 93.28%.

Learning Model for Avoiding Drowsy Driving with MoveNet and Dense Neural Network

  • Jinmo Yang;Janghwan Kim;R. Young Chul Kim;Kidu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.142-148
    • /
    • 2023
  • In Modern days, Self-driving for modern people is an absolute necessity for transportation and many other reasons. Additionally, after the outbreak of COVID-19, driving by oneself is preferred over other means of transportation for the prevention of infection. However, due to the constant exposure to stressful situations and chronic fatigue one experiences from the work or the traffic to and from it, modern drivers often drive under drowsiness which can lead to serious accidents and fatality. To address this problem, we propose a drowsy driving prevention learning model which detects a driver's state of drowsiness. Furthermore, a method to sound a warning message after drowsiness detection is also presented. This is to use MoveNet to quickly and accurately extract the keypoints of the body of the driver and Dense Neural Network(DNN) to train on real-time driving behaviors, which then immediately warns if an abnormal drowsy posture is detected. With this method, we expect reduction in traffic accident and enhancement in overall traffic safety.

A Study on the Driver's Drowsiness Warning System (운전자 졸음각성 시스템 개발에 관한 연구)

  • Lee, M.H.;Jeong, D.S.;Kim, J.Y.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.131-132
    • /
    • 1998
  • The purpose of this study is to keep drivers from falling asleep at the wheel, it is necessary to find ways of detecting and relieving drowsiness. For the estimation of our warning system, we measured the physiological parameters such as EEG, ECG, EOG while they performed a monotonous task intended to induce drowsiness. The effects of a oxygen, odor and various colors on the subjects while in a drowsy state were examined. It was found that a combination of a certain amount of oxygen and odor such as a menthol and yellow color can have a positive effect of relieving drowsiness.

  • PDF

An Analysis of Visual Distraction and Cognitive Distraction using EEG (뇌파를 이용한 시각적 주의산만과 인지적 주의산만 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.166-172
    • /
    • 2018
  • The distraction of the driver's attention causes as much traffic accidents as drowsiness driving. Yet though there have been many studies on drowsiness driving, research on distraction driving is insufficient. In this paper, we divide distraction of attention into visual distraction and cognitive distraction and analyze the EEG of subjects while viewing images of distracting situations. The results show that more information is received and processed when distractions occur. It is confirmed that the probability of accident increases when the driver receives overwhelming amount of information that he or she cannot concentrate on driving.

Real-time Intelligent Health and Attention Monitoring System for Car Driver by Measurement of Vital Signal (생체신호 측정에 의한 실시간 지능형 운전자 건강 및 주의 모니터링 시스템)

  • Shin, Heung-Sub;Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.545-548
    • /
    • 2009
  • Recently, researches related to automative mechanism have been widely studied to increase the driver's safety by continuously monitoring the driver's health condition to prevent driver's drowsiness. This paper describes the design of wearable chest belt for ECG and reflectance pulse oximetry for $SpO_2$ sensors based on wireless sensor network to monitor the driver's healthcare status. ECG, $SpO_2$ and heart rate signals can be transmitted via wireless sensor node to base station connected to the server. Intelligent monitoring system is designed at the server to analyze the $SpO_2$ and ECG signals. HRV(Heart Rate Variability) signals can be obtained by processing the ECG and PPG signals. HRV signals are further analyzed based on time and frequency domain to determine the driver's drowsiness status.

  • PDF

A pressure sensor system for detecting driver's drowsiness based on the respiration Paper Template for the KITS Review (호흡기반 운전자 졸음 감지를 위한 압력센서 시스템)

  • Kim, Jaewoo;Park, Jaehee;Lee, Jaecheon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • In this paper, a driver's drowsy detection sensor system based on the respiration is investigated. The sensor system consists of a piezoelectric pressure sensor attached at the abdominal region of the seat belt and a personal computer. The piezoelectric pressure sensor was utilized for the measurement of pressure variations induced by the movement of the driver abdomen during breathing. The signal processing software for detecting driver's drowsiness was produced using the Labview. The experiments were performed with 30 years male driver. The amplitude of the respiration at awake state was larger than one at the drowsy state. On the contrary, the respiration rate at awake state was lower than one at the drowsy state. The drowsy detection sensor system developed based on the experimental could successfully detect the driver's drowsy on real-time.

Feature Based Techniques for a Driver's Distraction Detection using Supervised Learning Algorithms based on Fixed Monocular Video Camera

  • Ali, Syed Farooq;Hassan, Malik Tahir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3820-3841
    • /
    • 2018
  • Most of the accidents occur due to drowsiness while driving, avoiding road signs and due to driver's distraction. Driver's distraction depends on various factors which include talking with passengers while driving, mood disorder, nervousness, anger, over-excitement, anxiety, loud music, illness, fatigue and different driver's head rotations due to change in yaw, pitch and roll angle. The contribution of this paper is two-fold. Firstly, a data set is generated for conducting different experiments on driver's distraction. Secondly, novel approaches are presented that use features based on facial points; especially the features computed using motion vectors and interpolation to detect a special type of driver's distraction, i.e., driver's head rotation due to change in yaw angle. These facial points are detected by Active Shape Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). Various types of classifiers are trained and tested on different frames to decide about a driver's distraction. These approaches are also scale invariant. The results show that the approach that uses the novel ideas of motion vectors and interpolation outperforms other approaches in detection of driver's head rotation. We are able to achieve a percentage accuracy of 98.45 using Neural Network.

Trends and Implications for Driver Status Monitoring in Autonomous Vehicles (자율주행차량 운전자 모니터링에 대한 동향 및 시사점)

  • M. Chang;D.W. Kang;E.H. Jang;W.J. Kim;D.S. Yoon;J.D. Choi
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.31-40
    • /
    • 2023
  • Given recent accidents involving autonomous vehicles, driver monitoring technology related to the transition of control in autonomous vehicles is gaining prominence. Driver status monitoring systems recognize the driver's level of alertness and identify possible impairments in the driving ability owing to conditions including drowsiness and distraction. In autonomous vehicles, predictive factors for the transition to manual driving should also be included. During traditional human driving, monitoring the driver's status is relatively straightforward owing to the consistency of crucial cues, such as the driver's location, head orientation, gaze direction, and hand placement. However, monitoring becomes more challenging during autonomous driving because of the absence of direct manual control and the driver's engagement in other activities, which may obscure the accurate assessment of the driver's readiness to intervene. Hence, safety-ensuring technology must be balanced with user experience in autonomous driving. We explore relevant global and domestic regulations, the new car assessment program, and related standards to extract requirements for driver status monitoring. This kind of monitoring can both enhance the autonomous driving performance and contribute to the overall safety of autonomous vehicles on the road.

A Study on the Driver's Drowsiness Warning System using Oxygen and Color (산소와 칼라를 이용한 운전자 졸음각성 시스템 개발에 관한 연구)

  • 이미희;김종윤;송철규;김남균
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.175-180
    • /
    • 2000
  • 본 논문은 주행 중의 졸음방지를 목적으로 하는 각성시스템의 평가에 관한 연구이다. 졸음운전을 방지하는 데에는 각성도의 저하상태를 높은 정확도로 검출하는 기술과 그것을 해소하는 기술이 필요하다. 본 논문에서는 졸음운저자를 위해서 졸음각성시스템을 향상시켰다. 개발된 각성시스템의 평가를 위해서 졸음을 유도하는 단조로운 행위를 수행하면서 뇌파, 심전도, 안전도와 같은 생체신호를 측정하였다. 피험자가 졸음상태에 있을 때에 산소, 향, 여러 가지 색 자극을 제시함으로써 각성효과를 평가하였다. 졸음의 해소에 효율적인 일정한 양의 산소와 멘톨 성분이 함유된 향을 동시에 각성자극으로 제시하였을 때와, 노란색의 색 자극을 주었을 때 가장 각성에 효과적임을 확인할 수 있었다.

  • PDF