• 제목/요약/키워드: Drive Axle

검색결과 54건 처리시간 0.023초

완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가 (Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove)

  • 신재명;한승호;한동섭
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰 (Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles)

  • 이일권;문학훈;염광욱
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

A Review of Rear Axle Steering System Technology for Commercial Vehicles

  • 하룬 아흐마드 칸;윤소남;정은아;박정우;유충목;한성민
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.152-159
    • /
    • 2020
  • This study reviews the rear or tag axle steering system's concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.

CALT 방법을 이용한 액슬구동축의 수명 예측 (Lifetime Estimation of an Axle Drive Shaft by Calibrated Accelerated Life Test Method)

  • 김도식;김형의;윤성한;강이석
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.273-281
    • /
    • 2010
  • 본 논문은 교정가속수명시험법을 이용하여 액슬구동축의 피로수명을 예측하는 법을 제안한다. 교정가속 수명시험법은 수명예측, 시험시간 절감, 신뢰성 정량화시에 매우 효과적이다. 피로시험은 두 개의 고 부하 수준과 한 개의 저 부하 수준에서 수행되고, 외삽법을 사용하여 사용수준에서의 수명시간을 예측하게 된다. 본 논문에서는 수행시험 결과로부터 획득한 수명시간, 가속지수, 형상모수, 척도모수등과 같은 주요 신뢰성 인자들을 보여주고 있다. 액슬구동축의 수명예측은 부하스펙트럼 데이터와 시험데이터와의 비교 연구를 수행하여 검증하였다. 교정가속수명시험법을 사용한 수명예측법은 짧은 시간내에 수명을 예측하는데 매우 효과적인 방법임을 확인하였다.

지게차 전용 동력전달시스템의 설계 및 개발에 관한 연구 (A Study on the Design and Development of the Power Transmission System for Lift Truck)

  • 장경열;박중순;유우식
    • 산업경영시스템학회지
    • /
    • 제32권1호
    • /
    • pp.34-43
    • /
    • 2009
  • In this thesis, we explain developing processes of the power transmission system for lift truck. Conventional power transmission system had some problems such as spatial constraints or low speed and high torque problem. Because conventional power transmission system was mainly designed for high speed vehicles. In this paper we developed power shift drive axle specialized for $2.0{\sim}3.5$ ton lift truck. Innovative structure of transmission which is built in inside axle, enables to reduce system weight and size by 40% compared to the conventional power transmission system. Also, it is possible to do additional functions such as auto parking system and anti-roll back system.

산업용 지게차의 구동부에 대한 소음/진동 저감 방안에 대한 연구 (A Study on Reduction of Noise and Vibration for Driving System of An Industrial Forklift)

  • 홍일화;김우형;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.239-243
    • /
    • 2006
  • A noise/vibration of the forklift happens in the driving axle to charge the drive and are examined closely by an each reason. After this study consider a reduction method of a noise/vibration about the gear, axle, bearing and others, the purpose of this study is to reduce a noise/vibration for a stability of the total system. From the data to be measured through all experimental method, the problems of the gear, axle, bearing, housing and others are examined closely, and the forklift is derived the model to be the engineering. The Mechanism of the problem occurrence is examined through a palametric research about an each influence factor. Lastly, the resuls of this study propose the model to he improved.

  • PDF

Development of simulation model of an electric all-wheel-drive vehicle for agricultural work

  • Min Jong Park;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Dong Il Kang;Seung Jin Ma;Yong Joo Kim
    • 농업과학연구
    • /
    • 제51권3호
    • /
    • pp.315-329
    • /
    • 2024
  • This study was conducted for simulation model development of an electric all-wheel-drive vehicle to adapt the agricultural machinery. Data measurement system was installed on a four-wheel electric driven vehicle using proximity sensor, torque-meter, global positioning system (GPS) and data acquisition (DAQ) device. Axle torque and rotational speed were measured using a torque-meter and a proximity sensor. Driving test was performed on an upland field at a speed of 7 km·h-1. Simulation model was developed using a multi-body dynamics software, and tire properties were measured and calculated to reflect the similar road conditions. Measured and simulated data were compared to validate the developed simulation model performance, and axle rotational speed was selected as simulation input data and axle torque and power were selected as simulation output data. As a result of driving performance, an average axle rotational speed was 115 rpm for each wheel. Average axle torque and power were 4.50, 4.21, 4.04, and 3.22 Nm and 53.42, 50.56, 47.34, and 38.07 W on front left, front right, rear left, and rear right wheel, respectively. As a result of simulation driving, average axle torque and power were 4.51, 3.9, 4.16, and 3.32 Nm and 55.79, 48.11, 51.62, and 41.2 W on front left, front right, rear left, and rear right wheel, respectively. Absolute error of axle torque was calculated as 0.22, 7.36, 2.97, and 3.11% on front left, front right, rear left, rear right wheel, respectively, and absolute error of axle power was calculated as 4.44, 4.85, 9.04, and 8.22% on front left, front right, rear left, and rear right wheel, respectively. As a result of absolute error, it was shown that developed simulation model can be used for driving performance prediction of electric driven vehicle. Only straight driving was considered in this study, and various road and driving conditions would be considered in future study.

차세대 철도차량용 직접구동방식 T/M개발관련 기술개발 동향 (A Trend of Direct Drive Traction Motor for Next Generation Railway Vehicles)

  • 권중록;김남해;김근웅;이정일;이종인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.434-439
    • /
    • 2002
  • The researches on the direct drive system, which directly transfers axle load of the traction motor to wheels, have been developed as a next generation drive system in Japan and Europe. As a result of excluding couplings and gear units, the direct drive system has advantages on the bogie mount space to be smaller sized, lower noisy, more efficient and less weighted than the conventional drive system - indirect drive system. Since the simplification of the direct drive system design depends on the design of the traction motors, the researches on the direct drive system with focusing on the traction motors get started. The advantages/disadvantages of direct drive system, types, structures, cooling systems and interfaces of the traction motors are presented on this paper. Furthermore, the development of other countries on the electric equipments of the next generation railway vehicles are discussed and the necessity & requirement for developing new concepts of traction motors are assured.

  • PDF