• Title/Summary/Keyword: Drinking-water Treatment

Search Result 737, Processing Time 0.031 seconds

A study on the application of water safety plans for the hazard risk management of tap water (수돗물 위해요소 리스크 관리를 위한 물안전계획 적용 연구)

  • Kim, Jinkeun;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.259-268
    • /
    • 2019
  • One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant($Q=25,000m^3/d$) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase($Ca(OCl)_2$) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities.

Utility Estimation of Pre-filtration on the Membrane Water Treatment Process (막여과 정수처리공정에서 전여과공정의 효용성 평가)

  • Park, Min Koo;Choi, Sang il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.445-448
    • /
    • 2008
  • The application of the membrane filtration process has been increased for the drinking water treatment system because of excellent quality of treated water compared with the sand filtration process. The selection of suitable pre-treatment processes and optimum flux according to the characteristics of raw water are important factors for the design of membrane processes. In this study, the most efficient pre-treatment processes for drinking water was selected by investigating the effects of pre-treatment processes on the operational stability of the membrane filtration process. Both lab-scale and pilot-scale experiments were conducted. In the lab-scale test, the effect of pre-treatment processes on the stability of the membrane filtration process was investigated indirectly by comparing the performance of membrane flux for raw water, pre-treated water, and membrane permeated water. In the pilot-scale test, the usefulness of prefiltration processes was assessed by comparing the performance of single membrane process and hybrid coagulation-membrane process. The results indicated that the coagulation process contributed to the stabilization of trans-membrane pressure (TMP) by removing contaminants on membranes, though the pre-filtration process had little effect on the TMP.

Evaluation of Influence Factors for Determination of Proper Backwashing Time of Biological Activated Carbon (BAC) Process in Drinking Water Treatment Process (정수처리용 활성탄 공정의 적정 역세척 시점 선정을 위한 영향인자들 평가)

  • Kim, Sang-Goo;Park, Hong-Gi;Son, Hee-Jong;Yoom, Hoon-Sik;Ryu, Dong-Choon
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1551-1558
    • /
    • 2015
  • In Korea, many drinking water treatment plants (DWTPs) have introduced and are going to introduce biological activated carbon (BAC) process to treated dissolved organic matter (DOM) in water which are difficult to control by conventional water treatment processes. Even though more decade have passed since introduced BAC in Korea, most of BAC operating method was followed to the modified sand filter operating manuals. In case of BAC backwashing, many DWTPs set the periods of backwashing about 3~5 days. In this study, we have collected data to set the proper BAC backwashing periods from both pilot-plant and real DWTPs. We had measured heterotrophic plate count (HPC), turbidity, water temperature, dissolved organic carbon (DOC) and headloss from just after backwashing to the next backwashing time for two years. Considering water quality factors, the BAC run time from backwashing to the next backwashing could extend more 30 days without water quality deterioration if the head loss do not reach the limited level which depends on each BAC facilities' condition. It means the BAC treated water could be saved in the proportion of extended the backwashing period to the existing backwashing period.

Characterization of NOM Behavior and DBPs Formation in Water Treatment Processes (정수처리공정에서 NOM 거동과 소독부산물 발생특성)

  • Kim, Sang Eun;Gu, Yeun Hee;Yu, Myong Jin;Chang, Hyun Seong;Lee, Su Won;Han, Sun Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.395-407
    • /
    • 2007
  • Disinfection by-products(DBPs) are formed through the reaction between chlorine and natural organic matter(NOM) in water treatment. For reducing the formation of chlorinated DBPs in the drinking water treatment, there is a need to evaluate the behavior of NOM fractions and the occurrence of DBPs for each fraction. Among the six fractions of NOM, the removal of HPOA and HPIN got accomplished through coagulation and sedimentation processes. Advanced water treatment processes were found to be most significant to remove the HPOA and HPON. It was found that HPOA made the most THMFP level than any other fractions and HPIA and HPOA formed higher HAAFP. The fraction of NOM with MW less than 1k Da was 32.5~54.3% in intake raw water. Mostly the organic matter with MW more than 1k Da was removed through coagulation and sedimentation in the drinking water treatment processes. In case of advanced water treatment processes, the organic matter with MW 1k~100k Da decreased by means of ozone oxidation for high molecular weight substances. As the result low molecular organic matter increased. In the BAC and GAC processes, the organic matter with MW less than 100k Da decreased.

Towards a novel approach to improve drinking water quality at Dhaka, Bangladesh

  • Serajuddin, Md.;Chowdhury, Md. Aktarul Islam
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2018
  • The river water source of Saidabad Surface Water Treatment Plant at Dhaka, Bangladesh, is deteriorated too much to be treated by conventional treatment process due to excessive ammonia pollution. In order to improve the raw water quality before it enters into the main treatment chain, a pilot study was conducted for pre-treatment of the raw water. The objective is to investigate the rate of reduction of ammonia using the Meteor pilot, a biological pretreatment system, which is a laboratory scale Moving Bed Biofilm Reactor with a nominal volume of hundred liters, filled with 50 L of Meteor 660 media. The reduction of ammonia was quite significant on average 73%, while the reduction of COD was in a range from 20 to 60%. The Meteor pilot was able to treat and nitrify the raw water and produce an effluent that respects the guarantee of ammonia < $4.0mg\;NH_3-N/L$ when the raw water ammonia concentration was < $15mg\;NH_3-N/L$. The study identified operating parameters necessary to achieve the desired goal of adequate ammonia removal. The study results would benefit a range of systems across the country by providing guidance on the design and operation of a biological pre-treatment system for ammonia removal.

Research on Groundwater Quality and Economic Expenses for Drinking in Daegu and Gyeongbuk Areas (대구.경북지역 마을상수도용 지하수의 수질과 주민의 경제비용에 대한 조사)

  • Kang, Mee-A;Jeong, Tae-Kyung
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.307-311
    • /
    • 2009
  • Agricultural is recognised as being the leading contributor to groundwater. As a consequence, the consumer have to has bear the high expenses of water supplied to be treated. Importantly, the cost of water supplied is a function of the water quality as well as the scale of drinking water treatments. The relationship between the consumer payment and water quality improvement was affected by the scale of drinking water treatments directly. Hence when we achieve the high quality and low cost in the case of groundwater treatment for drinking, it is needed to consider both water quality and plant scale.

Drinking Water Treatment of Surface Water Using Microfiltration-Nanofiltration Processes (정밀여과 및 나노여과 공정을 이용한 지표수의 상수처리)

  • Lee, Sung-Woo;Kim, Chung-Han;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.224-230
    • /
    • 2000
  • Membrane processes are capable of removing much materials from water. The removal or rejection characteristics of a membrane is usually depend upon the nominal pore size or MWCO(molecular weight cut off). A membrane with a smaller nominal pore size or MWCO should be capable of removing smaller contaminants from water. A series of experiments was performed to investigate the separation characteristics of membrane processes which consisted of microfiltration(MF) and nanofiltration(NF). To evaluate removal efficiencies of some pollutants such as the consumption of $KMnO_4$, THMFP, NH3-N, Fe, Mn, and pesticides, source water sampled from the Kum river was treated by the those membrane processes. Also, the results of experiments were compared with those of conventional water treatment processes. By two types of the membrane process, total removal efficiency of $KMnO_4$ consumed, THMEP, and $NH_3-N$ were 91.0%, 84.3%, and 85.5%, respectively and those processes were efficient in pesticides removal as well. Most of the effluents satisfied the Korean standard of drinking water quality continuously in the experimental periods. However, NF was needed for producing the safe drinking water in case of treating the raw water contaminated with Mn since removal efficiency of MF was not high enough. On the basis of the experimental results, it was suggested that NF could be applied to remove not only $NH_3-N$ but THMFP even without pre-chlorination.

  • PDF

Membrane Filtration Technology for Drinking Water Treatment & Night Soil Treatment

  • Kato, Yasuhiko
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.155-170
    • /
    • 1998
  • 1. The flux for hydrophilic CA membrane is higher than that for hydrophobic PES membrane at any operating conditions. The difference in bpth fluxes becomes greater as the water recovery is lower. 2. Backwash pressure should be more than twice as high as filtration pressure in order to maintain the higher flux. Backwash frequency is independent of the flux when the UF is operated under the same water recovery. 3. The relatively lower crossflow velocity of around 0.1 m/s would be appropriate because of the lower energy consumption per treated water. 4. The membrane fouling occurring at high turbidity and high concentration of organic compounds in raw water can reduce the flux and increase the removal of the organic compounds. 5. It is confirmed by the pilot plant testing that the UF by using the CA membrane module was well applicable to the drinking water treatment.

  • PDF

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.