• Title/Summary/Keyword: Drilling processing

Search Result 103, Processing Time 0.028 seconds

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (드릴가공시 신경망에 의한 공구 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영;김대성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1021-1024
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. In this paper, the vision system of the sensing methods of drill flank wear on the basis of image processing is used to detect the wear pattern by non-contact and direct method and get the reliable wear information about drill. In image processing of acquired image, median filter is applied for noise removal. The vision flank wear area of the drill was measured. Backpropagation neural networks (BPns) were used for no-line detection of drill wear. The neural network consisted of three layers: input, hidden and output. The input vectors comprised of spindle rotational speed, feed rates, vision flank wear, thrust and torque signals. The output was the drill wear state which was either usable or failure. Drilling experiments with various spindle rotational speed and feed rates were carried out. The learning process was peformed effectively by utilizing backpropagation. The detection of the abnormal states using BPNs achieved 96.4% reliability even when the spindle rotational speed and feedrate were changed.

  • PDF

Ripple Formation and Polarization Effects in Femtosecond Laser Drilling (펨토초 레이저에 의한 SUS 가공 특성 및 리플 생성)

  • Son, Ik-Bu;Go, Myeong-Jin;Kim, Yeong-Seop;No, Yeong-Cheol
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • Ripple formation of femtosecond laser in stainless steel is investigated using 184 fs pulses with a center wavelength of 785 nm. The effect of the laser polarization relative to the translation direction is observed. For drilling with a certain aspect ratio, reflections at the hole walls take place, leading to a non-uniform intensity distribution deep inside the formed hole. Finally, it is shown that a circular polarization during the drilling process significantly improves the quality of the produced holes.

  • PDF

Experimental study on micro-hole drilling with high aspect ratio using picosecond laser (피코초 레이저를 이용한 고세장비 미세 홀가공의 실험적 연구)

  • Oh, Bukuk;Kim, Jongki;Kim, Dooyoung;Lee, Seungkey;Jeong, Soohoa;Hong, Michael
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.11-13
    • /
    • 2015
  • Pressure-drop in a micro-channel is critical when a hole diameter is less then 100um with the high aspect ratio, more than 40. To minimize these pressure loss for micro-channel applications is important and there would be the best hole diameter, taper angle, and their combinations. In this work, the parametric study for laser drilling of anodized material is conducted to obtain the micro-channel hole with high aspect ratio.

New CO Laser Technology Offers Processing Benefits

  • Held, Andrew
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.9-13
    • /
    • 2015
  • The development of a reliable, high-power source of mind-IR laser light gives process develop important tool with unique characteristics that will significantly impact a diverse range of applications.

Efficient MQL-based Drilling of Inconel 601 (인코넬 601의 효율적인 MQL드릴링 가공)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In drilling Inconel 601, which is used for compressor cases in aircraft engines, a lot of cutting oil must be supplied. This prevents tools from wear and fracture due to the heat buildup resulting from the high-temperature resistance and toughness of this alloy. However, the cutting oil supply has compromised the machining environment. This has caused attention to shift to an environmentally friendly cutting fluid supply system called the Minimum Quantity Lubrication(MQL) system. The aim of this study was to find a more efficient drill processing method using MQL and to verify its performance. To that end, the properties of Inconel that make it difficult -to -drill were studied by a comparison with the drilling of SM45C. Specific factors (i.e., cutting force and tool wear) were examined in relation to the conditions in the MQL-based drilling system. Based on these results, a sealed cover and step feed were proposed as measures to increase the effectiveness of the MQL system. The efficiency of the proposed method was established.

A study on burr generation of laser micro-hole drilling for copper foil (Copper 박막의 레이저 미세홀 가공이 버 생성에 관한 연구)

  • Oh J.Y.;Shin B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.873-877
    • /
    • 2005
  • The burr of micro drilling and micro cutting on thin metal film is a major obstacle to mass production for micro PCB boards in micro technologies of personal computing and telecom explosion. As the burr affects on the assembling process, it is necessary to study continuously on control or elimination of the burr. In order to get higher valued products, it is also needed to competitive techniques with the high resolution. In this paper, we studied experimentally the burr generation that when it is processed on the copper foil by laser in micro-hole machining. Unlike mechanical machining the burr produced on substrate is a resultants of melt and re-solidification of a melten metal which was heated and treated by laser. And higher laser energy increases the size of burr. Therefor in micro-drilling with laser, it is difficult to reduce the effects of burr for very thin metal sheets. We investigated the stale of the burr and analyzed the laser ablation Cu micro machining with respect to laser intensity and processing time.

  • PDF

Glass Drilling using Laser-induced Backside Wet Etching with Ultrasonic Vibration (초음파 진동과 레이저 후면 에칭을 통한 유리 구멍 가공)

  • Kim, Hye Mi;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Laser beam machining has been known as efficient for glass micromachining. It is usually used the ultra-short pulsed laser which is time-consuming and uneconomic process. In order to use economic and powerful long pulsed laser, indirect processing called laser-induced backside wet etching (LIBWE) is good alternative method. In this paper, micromachining of glass using Nd:YAG laser with nanosecond pulsed beam has been attempted. In order to improve shape accuracy, combined processing with magnetic stirrer has been widely used. Magnetic stirrer acts to circulate the solution and remove the bubble but it is not suitable for deep hole machining. To get better effect, ultrasonic vibration was applied for improving shape accuracy.

Development of a Cemented Carbide-Welded Deburring Tool for Burr Removal in Drill Holes of AL6061 Workpieces (AL6061 소재의 홀 가공 시 버 제거를 위한 초경합금 접합 디버링 공구 개발)

  • Sa, Min-Woo;Lee, Jae-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • In recent years, automated process technology has allowed for the rapid manufacturing of metal parts. Maintaining high product quality is of vital importance during the production of these parts. Surface defects occurring after processing can compromise their assembly precision and performance. In this study, a deburring tool was developed that can remove burrs generated from drilling. Through the evaluation of processing, burrs were completely removed at entrance and exit surfaces. Therefore, this newly developed deburring tool shows better performance than deburring tools currently in use.