• Title/Summary/Keyword: Drill hole

Search Result 163, Processing Time 0.025 seconds

Effect of chitosan/carbon nanotube fillers on vibration behaviors of drilled composite plates

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin;Kavla, Furkan
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.789-798
    • /
    • 2020
  • The effect of Chitosan (CS), Carbon Nanotube (CNT) and hybrid (CS-CNT) fillers on the natural frequency of drilled composite plate is investigated by experimentally in this study. The numerical validation is also made with a program based on Finite Element Method (SolidWorks). Nine types filled and one neat composite plates are used in the study. The fillers ratios are 1% CS, 2% CS, 3% CS, 0.1% CNT, 0.2% CNT, 0.3% CNT, 1% CS+0.3% CNT, 2% CS+0.3% CNT, 3% CS+0.3% CNT. The specimens cut to certain sizes by water jet from the plates 400 mm × 400 mm in dimensions. Some of them are drilled in certain dimensions with drill. The natural frequency of each specimen is measured by the vibration test set up to determine the vibration characteristic. The vibration test set up includes an accelerometer, a current source power unit, a data acquisition card and a computer. A code is written in Matlab® program for the signal processing. The study are investigated and discussed in four main points to understand the effect of the fillers on the natural frequency of the composite plate. These are the effect of fillers contents and amounts, orientation angles of fibers, holes numbers and holes sizes. As results, the natural frequency of the plate with 1% CS and 0.1% CNT hybrid filler is lower than those of the plates with other fillers ratios for 45° orientation angle. Besides, in the composite plate with 0° orientation angle, the natural frequency increases with increasing the filler ratio. Moreover, the natural frequency increases until a certain hole number and then it decreases. Furthermore, the natural frequency is not affected until a certain hole diameter but then it decreases.

A Measurement of Sea Ice Properties at Chukchi Borderland During the Summer (여름철 Chukchi Borderland 부근 해빙 재료특성 계측)

  • Jeong, Seong-Yeob;Choi, Gul-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Sea ice properties have been considered a key indicator in the structural design criteria of icebreaking vessels and arctic offshore platforms to estimate design ice load and resistance for their safety management in Arctic Ocean. A measurement study of sea ice properties was conducted during July to August of 2011 with the Korean icebreaking research vessel "Araon" around Chukchi Borderland. The sea ice concentration appears to be rapidly decreasing during this cruise. Ice condition seems to be thick second-year ice and multi-year ice and then, a lot of melt ponds were observed in the surface of ice floe. Calculated flexural strength of sea ice was about 250~550kPa, ice thickness was roughly 1.3~3.0m. In this research we performed field experiment to measure ice temperature along the depth, thickness, density, salinity, brine volume ratio and crystal structure. Apparent conductivities derived with the electromagnetic induction instrument were compared to drill hole measurement results and accuracy of sea ice thickness estimation formula was discussed.

Infrequent Hemorrhagic Complications Following Surgical Drainage of Chronic Subdural Hematomas

  • Rusconi, Angelo;Sangiorgi, Simone;Bifone, Lidia;Balbi, Sergio
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.379-385
    • /
    • 2015
  • Chronic subdural hematomas mainly occur amongst elderly people and usually develop after minor head injuries. In younger patients, subdural collections may be related to hypertension, coagulopathies, vascular abnormalities, and substance abuse. Different techniques can be used for the surgical treatment of symptomatic chronic subdural hematomas : single or double burr-hole evacuation, with or without subdural drainage, twist-drill craniostomies and classical craniotomies. Failure of the brain to re-expand, pneumocephalus, incomplete evacuation, and recurrence of the fluid collection are common complications following these procedures. Acute subdural hematomas may also occur. Rarely reported hemorrhagic complications include subarachnoid, intracerebral, intraventricular, and remote cerebellar hemorrhages. The causes of such uncommon complications are difficult to explain and remain poorly understood. Overdrainage and intracranial hypotension, rapid brain decompression and shift of the intracranial contents, cerebrospinal fluid loss, vascular dysregulation and impairment of venous outflow are the main mechanisms discussed in the literature. In this article we report three cases of different post-operative intracranial bleeding and review the related literature.

A Study on the Development of Rotary Ultrasonic Machining Spindle (회전 초음파가공 주축 개발에 관한 연구)

  • Li, Chang-Ping;Kim, Min-Yeop;Park, Jong-Kweon;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.160-166
    • /
    • 2015
  • Ultrasonic machining (USM) has been considered a new, cutting-edge technology that presents no heating or electrochemical effects, with low surface damage and small residual stresses on brittle workpieces. However, nowadays, many researchers are paying careful attention to the disadvantages of USM, such as low productivity and tool wear. On the other hand, in this study, a high-performance rotary ultrasonic drilling (RUD) spindle is designed and assembled. In this system, the core technology is the design of an ultrasonic vibration horn for the spindle using finite element analysis (FEA). The maximum spindle speed of RUM is 9,600 rpm, and the highest harmonic displacement is $5.4{\mu}m$ noted at the frequency of 40 kHz. Through various drilling experiments on glass workpieces using a CVD diamond-coated drill, the cutting force and cracking of the hole entrance and exit side in the glass have been greatly reduced by this system.

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding (용사법과 레이저 용접을 이용한 복합소재 미세필터 연구)

  • Song, In-Gyu;Choi, Hae-Woon;Kim, Joo-Han;Yun, Bong-Han;Park, Jung-Eon
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF

The Effects of Low-intensity Ultrasound on TGF-$\beta$1 Expression and Healing of Rat Femur Fracture (저강도 초음파가 흰쥐 대퇴골 골절치유와 TGF-$\beta$1의 발현에 미치는 영향)

  • Nam, Ki-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.97-102
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate the effects of low intensity pulsed ultrasound on TGF-$\beta$1 expression and healing of rat femur penetrating fractures. Methods: Rats were anesthetized with ketamine and xylazine. Using aseptic technique, we exposed the lateral right femoral diaphysis with removal of the periosteum. We made one hole along its long axis with an electrically-driven 1.8 mm diameter drill bit. Postoperatively, rats were divided into two groups (a control group, n=15; an experimental group, n=15). The experimental group was treated with low intensity pulsed ultrasound (pulse rate: 1:4, 0.5 W/$cm^2$, 10 minutes, 1 time per day) for 3 weeks. The control group was treated with sham ultrasound (with the US unit turned off). Results: The experimental group achieved more callus formation and TGF-$\beta$1 expression than the control group at the $7^{th}$, $14^{th}$ and $21^{st}$ days after low intensity pulsed ultrasound treatment. Conclusion: This study suggests that low intensity pulsed ultrasound facilitates bone fracture repair, possibly via increased TGF-$\beta$1 expression.

  • PDF

Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes (드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법)

  • Kim, Tae-Hoon;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.

Analyses of Shear and Frictional Characteristics in Drilling Process (드릴링 공정의 전단 및 마찰 특성 해석)

  • Kim, Sun-Il;Choi, Won-Sik;Son, Jae-Hwan;Jang, Eun-Suk;Lee, Young-Moon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.22-27
    • /
    • 2012
  • Drilling process is usually the most efficient and economical method of making a hole in a solid body. However, there have been no analytical method to assess drilling process based on the shear and frictional characteristics. In this paper, procedures for analyzing shear and frictional processes of drilling have been established by adopting an equivalent turning system to drilling. A series of drilling experiments were carried out with varying feed, velocity and drill shape factors. Using the results of the experiments, the cutting characteristics including shear in the primary shear zone and friction in the chip-tool contact region of drilling process have been analyzed. The specific cutting energy tends to decrease exponentially with increase of feed rate. In drilling process 35-40% of the total energy is consumed in the friction process. This is greater than that of turning process in cutting of the same work material.

Improvement of Manufacturing Process for Fuel Oil Supply Pipe using Large Vessel (대형선박용 연료공급관 가공공정 개선)

  • Jeon, Eon-Chan;Han, Min-Sik;Kim, Nam-Hun;Min, Jung-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.64-69
    • /
    • 2010
  • This study is the machining of fuel supply pipe used in large vessels. The fuel supply pipe of large vessels have effects to reduce engine exhaust because of common rail system and show excellent fuel efficiency so it is in the limelight as a vessel engine of next generation. At present, the shape of fuel supply pipe of common rail used for huge two-stroke & low-speed vessels is like a peanut hole so the second machining is necessary after the first machining. There is high error rate for machining and the materials waste caused by machining error is serious. Also, in this time the request for increasing the length of fuel supply pipe is suggested in the world market, it's judged that current methods will show higher error rate for machining. Therefore, the purpose of this study is to improve the machining process used originally. For that, the system controlling the process was developed as well as surface roughness and straightness which are evaluation items of fuel supply pipe were measured so that improved process can be observed in real time.