• Title/Summary/Keyword: Drill Behaviors

Search Result 11, Processing Time 0.032 seconds

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

A Study on the Fire Drill Behavior Characteristics in Rehabilitation Center for Visually Impaired Persons (시각장애인 복지관의 화재 피난행태 특성분석 연구)

  • Lee, Jeong-Soo;Kwon, Heung-Soon;Kim, Eung Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5646-5653
    • /
    • 2015
  • This study focused on the architectural, interior and management guidelines in rehabilitation center for visually impaired persons. For these purposes, we reviewed the movement behaviors and the characteristics of fire drill in rehabilitation center for visually impaired persons. The results are as follows. : First, the liner circulation paths and interior landmarks are recommended, and dwelling units and program rooms should be located in ground floor for barrier free evacuation. Second, It is important to establish continuous handrail, variations of paving patterns and materials, good color definition, tactile informations and directional sound. Third, it is necessary to serve more specified architectural, interior, and management guidelines according to impaired prototypes.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Studies on Changes of Blood Components and Body Composition in the Cadets (사관생도들의 혈액성분 및 신체조성 변화 연구)

  • Kim, Dong-Soo;Chung, Yeon-Soo;Kim, Keun-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • This study investigated physical and physiological changes of normal young adults, who are cadets of the Air Force Academy, have kept long-term physical activities and healthy behavior. The physical and physiological indices were the blood and body composition. Data were collected at the first year period, and then 4th year period from same group of cadets. The amounts of blood components were not changed, but variation among cadets was significantly reduced in the 4th grade period. The red blood cells(RBCs) were significantly reduced and the concentration of hemoglobin(HGB) were significantly increased. The body weight was significantly decreased in the 1st grade period since the body fat was rapidly decreased after the basic military drill, and then it was recovered with building up of the skeletal muscle in the 4th grade period. Asymmetry of the arms was decreased with the increased physical activities and usage of various equipments. The muscular endurance were significantly enhanced in the 4th grade period. The long-term physical activities and healthy behaviors may keep the physical strength through enhanced blood stream and oxygen supply by reduction of the RBCs and increased HGB concentration, and fat and muscle control.

Applicability of Color Corescanner to the Analysis and Data-base of Drill Cores (시추코어 분석 및 데이터베이스화를 위한 칼라 코어스캐너의 응용)

  • ;Ghodrat Rafat
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.249-256
    • /
    • 2001
  • Optical Color Corescanner firstly developed by DMT-GeoTec, Germany and further upgraded through the Korea-Germany joint project is capable of duplicating the core surfaces. The tool uses a digital CCD line camera. As the core is rotated by an electric motor, the camera scans the uppermost line, everytime with a circumferential increment of up to 0.05mm(20pixels/mm) and hence a complete 360$^{\circ}$ unwrapped image(core image) is produced. This paper illustrated diverse research benefits of such core images from several test sites in our country. All scanned images could be stored as a data-base one and easily used with software facilities \circled1 to evaluate a percental distribution of mineral components or grain size etc. not only for the rock classification but also for e.g. the assessment of building stones, \circled2 to study potential reservoirs as a hydrocarbon indicator using ultraviolet fluorescence reflection from cores, \circled3 to facilitate the qualitative and quantitative analysis of fractures, \circled4 to evaluate the fractures and thin bedded reservoirs using spectral color responses. Based on abundant scanning experiments, it would seem that this imaging work should lead to reflecting the future trend in underground survey toward a more comprehensive understanding of the properties and behaviors of in situ rocks.

  • PDF

Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes (드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법)

  • Kim, Tae-Hoon;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.

Effect of chitosan/carbon nanotube fillers on vibration behaviors of drilled composite plates

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin;Kavla, Furkan
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.789-798
    • /
    • 2020
  • The effect of Chitosan (CS), Carbon Nanotube (CNT) and hybrid (CS-CNT) fillers on the natural frequency of drilled composite plate is investigated by experimentally in this study. The numerical validation is also made with a program based on Finite Element Method (SolidWorks). Nine types filled and one neat composite plates are used in the study. The fillers ratios are 1% CS, 2% CS, 3% CS, 0.1% CNT, 0.2% CNT, 0.3% CNT, 1% CS+0.3% CNT, 2% CS+0.3% CNT, 3% CS+0.3% CNT. The specimens cut to certain sizes by water jet from the plates 400 mm × 400 mm in dimensions. Some of them are drilled in certain dimensions with drill. The natural frequency of each specimen is measured by the vibration test set up to determine the vibration characteristic. The vibration test set up includes an accelerometer, a current source power unit, a data acquisition card and a computer. A code is written in Matlab® program for the signal processing. The study are investigated and discussed in four main points to understand the effect of the fillers on the natural frequency of the composite plate. These are the effect of fillers contents and amounts, orientation angles of fibers, holes numbers and holes sizes. As results, the natural frequency of the plate with 1% CS and 0.1% CNT hybrid filler is lower than those of the plates with other fillers ratios for 45° orientation angle. Besides, in the composite plate with 0° orientation angle, the natural frequency increases with increasing the filler ratio. Moreover, the natural frequency increases until a certain hole number and then it decreases. Furthermore, the natural frequency is not affected until a certain hole diameter but then it decreases.

Monitoring Rock Physical Property Changes due to Excavations Using Horizontal Crosshole Georadar Tomography (수평 시추공간 지오레이다 토모그래피를 이용한 터널 굴착에 의한 암반 물성 변화의 고찰)

  • Jung, Yun-Moon;Lee, Myung-Sung;Song, Myung-Jun;Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.342-347
    • /
    • 1996
  • The changes of electromagnetic wave velocity in rock were monitored to investigate rock behaviors due to the drill & blasting excavations through georadar tomography during the construction of the underground rock laboratory (5 m wide, 6 m high, and 140 m long) at Mabuk-Ri, Goosung-Myun, Yongin-Si, Kyunggi-Do. Two horizontal boreholes spaced 1.4 m apart were drilled parallel to the test tunnel before excavating it, high-resolution crosshole georadar tomography with about 500 MHz electromagnetic waves was performed at pre-excavation phase (May, 1996) and post-excavation phase (August, 1996). The data were acquired with the combination of 34 sources and 44 receivers with space of 0.3 m. Only 11 continuous receivers were selectively utilized with one fixed source. Sampling interval was 0.4 ns and each trace has 512 samples. The first arrival of each trace was picked manually with a picking software. The total number of rays used in inversion amounted to 34x11 and the size of pixel was determined to be 0.3 m. As an inversion technique, SIRT(Simultaneous Iterative Reconstruction Technique) was applied in this study. The velocity of electromagnetic waves at post-excavation phase decreased as large as 15% in comparison with that at pre-excavation phase, which may be attributed to the creation of micro-cracks in rock due to excavations and saturation with groundwater. Small amount of borehole deviation made a critical effect in radar tomography. Totally different tomograms were created after borehole deviation corrections.

  • PDF

Effect of the Leadership Pattern of a Leader of Security Martial Art on Taekwondo majors' Exercise Results (경호무도 지도자의 리더십 유형이 태권도 전공자들의 운동성과에 미치는 영향)

  • Baek, Mun-Jong
    • Korean Security Journal
    • /
    • no.17
    • /
    • pp.221-234
    • /
    • 2008
  • This research is aimed at looking into the effect of the leadership of a leader of a guard martial art on majors' exercise results. For this purpose, this research selected the present students of guard science-related department as a population as of the year 2008, and finally used the data from the 259 questionnaires collected mainly from the first-year students to the third-year students among the man & woman majors in Taekwondo at colleges across the country by using convenient sampling. To achieve research results, this research set a statistical significance level at $\alpha$=.05. A guard martial art leader's positive leadership can help Taekwondo majors improve their exercise results, so a leader is encouraged to show a leadership pattern having respect for objective, reasonable majors in tune with the paradigm of swimming with the stream of times rather than a traditional leadership pattern-lopsided communication. In addition, Taekwondo majors' potential for growth could get bigger, and visible results could also increase when a leader makes a positive effort to induce majors into making definite suggestion of their vision and growth at an all-inclusive viewpoint.

  • PDF