• Title/Summary/Keyword: Drift ratio

Search Result 366, Processing Time 0.023 seconds

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Wind Induced Vibration Design for High-rise buildings through Control of Natural Period (주기 조절을 이용한 고층 건물의 풍응답 조절 설계)

  • 김지은;차성희;서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.43-51
    • /
    • 2004
  • As the slenderness ratio of a high-rise building increases, the lateral load resisting system for the building is more often determined by serviceability design criteria. In serviceability design, the maximum drift and the level of vibration are controlled not to exceed the design criteria. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. Development of practical design method for wind induced vibration is required. Generally, wind induced acceleration responses are depending on several variables such as the weight density of a building, damping ratio, the natural period, and etc.. All parameters except the natural period or frequency are usually out of reach for structural engineers, then the wind acceleration response may be proportioned to the natural period. Therefore, in this paper, a wind induced vibration design method based on frequency control technique for high-rise is proposed. The method is applied to vibration design of a 25-story office building for performance evaluation.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Nonlinear control of a 20-story steel building with active piezoelectric friction dampers

  • Chen, Chaoqiang;Chen, Genda
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.21-38
    • /
    • 2002
  • A control algorithm combining viscous and non-linear Reid damping mechanisms has been recently proposed by the authors to command active friction dampers. In this paper, friction dampers and the proposed algorithm are applied to control the seismic responses of a nonlinear 20-story building. Piezoelectric stack actuators are used to implement the control algorithm. The capacity of each damper is determined by the practical size of piezoelectric actuators and the availability of power supply. The saturation effect of the actuators on the building responses is investigated. To minimize the peak story drift ratio or floor acceleration of the building structure, a practical sequential procedure is developed to sub-optimally place the dampers on various floors. The effectiveness of active friction dampers and the efficiency of the proposed sequential procedure are verified by subjecting the building structure to four earthquakes of various intensities. The performance of 80 dampers and 137 dampers installed on the structure is evaluated according to 5 criteria. Numerical simulations indicated that the proposed control algorithm effectively reduces the seismic responses of the uncontrolled 20-story building, such as inelastic deformation. The sub-optimal placement of dampers based on peak acceleration outperforms that based on peak drift ratio for structures subjected to near-fault ground motions. Saturation of piezoelectric actuators has adverse effect on floor acceleration.

Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions

  • Dolati, Abouzar;Taghikhany, Touraj;Khanmohammadi, Mohammad;Rahai, Alireza
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.573-589
    • /
    • 2015
  • In order to investigate the seismic behavior of highway bridges under near-fault earthquakes, a parametric study was conducted for different regular and irregular bridges. To this end, an existing regular viaduct Highway Bridge was used as a reference model and five irregular samples were generated by varying span length and pier height. The seismic response of the six highway bridges was evaluated by three dimensional non-linear response history analysis using an ensemble of far-fault and scenario-based near-fault records. In this regard, drift ratio, input and dissipated energy as well as damage index of bridges were compared under far- and near-fault motions. The results indicate that the drift ratio under near-fault motions, on the average, is 100% and 30% more than far-fault motions at DBE and MCE levels, respectively. The energy and damage index results demonstrate a dissipation of lower energy in piers and a significant increase of collapse risk, especially for irregular highway bridges, under near-fault ground motions.

Seismic Performance of Special Reinforced Concrete Coupling Beams with Different Reinforcement Details (보강상세에 따른 특수전단벽 연결보의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Coupling beams posses proper strength, stiffness and ductility capacities to resist efficiently under seismic loads. The strength, stiffness and ductility capacities for special diagonally reinforced concrete coupling beam with a span-to-depth ratio 2.0 or less is higher than those of coupling beam with conventionally reinforced concrete coupling beam. However, diagonally reinforced detailing creates major construction problem. In this study, design alternatives for diagonally reinforced concrete coupling beams were experimentally investigated. The results show that angle reinforced coupling beam(specimen SA) exhibited a better stable behavior in comparison with non-diagonally coupling beams(specimens SB-series) and sustained corresponding drift ratio, peak-to-peak stiffness and cumulative dissipated energy in comparison to diagonally coupling beam(specimen CA).

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures (평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석)

  • Park, Hyo-Sun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.