• Title/Summary/Keyword: Drift current

Search Result 338, Processing Time 0.03 seconds

TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX (온산공단 부근의 해양오염물질 이동)

  • CHANG Sun-duck;LEE Jong-Sub;HAN Kyeong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.151-162
    • /
    • 1980
  • To clarify the dispersion of pollutants introduced in the coastal region, a series of current measurements, the drogue and drift bottle experiments as well as the dye diffusion experiments were carried out in Onsan Bay and in the coastal waters of Ubong-ri near Ulsan. In the southeastern coastal region of Korean peninsula, that is, in the outside of Onsan Bay, the flood tidal current flows south-south-westward, and the ebb current flows north-north-eastward at a maximum speed of 1.0-1.1 knots at spring tide. In an inlet south of Cape Ubong, an anticyclonic eddy of 1 km in diameter is usually formed during both flood and ebb flows. The tidal current predominates in Onsan Bay at around spring tide. The maximum speed around spring tide was observed to be approximately 0.14 knot, while it was slower than 0.1 knot and variable at neap tide when the wind drift current played an important role. The flood tidal current flows westward while the ebb flow flows eastward in the northern region of the bay. The flood tidal current in the southern region of the bay flows west-north-westward, while the ebb current east-north-eastward. Wind drift currents in the coastal region of southern Korea are generally deduced to be southward in winter, the monthly mean speed being approximately 0.1 knot. Dye solution released at the northwestern corner in Onsan Bay was transported by eastward ebb tidal current toward the mouth of the bay dispersing by the wind. The apparent diffusion coefficient at 150 minutes after release in the bay was calculated to be $4.4\times10^4\;cm^2.sec^{-1}$, whereas that in the anticyclonic eddy was more or less smaller.

  • PDF

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

A lateral load pattern based on energy evaluation for eccentrically braced frames

  • Fakhraddini, Ali;Fadaee, Mohammad Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.623-632
    • /
    • 2018
  • Performance-Based Plastic Design (PBPD) method has been recently developed to evaluate the behavior of structures in different performance levels. The PBPD method utilizes a base shear force and a lateral load pattern that are estimated based on energy and yielding mechanism concepts. Using of current lateral force pattern results in weak structural members in upper stories of a structure so that the values of the story drift in these stories are larger than the target drift, particularly in high-rise buildings. Therefore, such distribution requires modifications to overcome this drawback. This paper proposes a modified lateral load pattern for steel Eccentrically Braced Frames (EBFs) based on parametric study. In order to achieve the modified load pattern, a group of 26 EBFs has been analyzed under a set of 20 earthquake ground motions. Additionally, results of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to derive the new load pattern. To prove the efficiency of present study, three EBFs as examples were designed by modified pattern and current PBPD distribution. Inelastic dynamic analyses results showed that the story drifts using modified lateral load pattern were well within the target values in comparison with current pattern in PBPD, particularly where the effect of the height is significant. The modified load pattern reduces the possibility of underdesigning in upper levels and overdesigning in lower levels of the frames.

Fabrication of a fast Switching Thyristor by Proton Irradiation Method (양성자 조사법에 의한 고속스위칭 사이리스터의 제조)

  • Kim, Eun-Dong;Zhang, Changli;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1264-1270
    • /
    • 2004
  • A fast switching thyristor with a superior trade-off property between the on-state voltage drop and the turn-off time could be fabricated by the proton irradiation method. After making symmetric thyristor dies with a voltage rating of 1,600 V from 350 $\mu$m thickness of 60 $\Omega$ㆍcm NTD-Si wafer and 200 $\mu$m width of n-base drift layer, the local carrier lifetime control by the proton irradiation was performed with help of the HI-13 tandem accelerator in China. The thyristor samples irradiated with 4.7 MeV proton beam showed a superior trade-off relationship of $V_{TM}$ = 1.55 V and $t_{q}$ = 15 $\mu$s attributed to a very narrow layer of short carrier lifetime(~1 $\mu$s) in the middle of its n-base drift region. To explain the small increase of $V_{TM}$ , we will introduce the effect of carrier compensation at the low carrier lifetime region by the diffusion current.ffusion current.t.

Drift Motion Analysis on Horizontal Plane of a Two-Point Moored Oil Tanker (2점 계류된 선박에 대한 수평면상 표류운동 해석)

  • 이호영;임춘규
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.8-12
    • /
    • 2004
  • The anchor is laid on the seabed, and the main engine is working against incident environmental loads in a typhoon. As the main engine is broken Mum in the storm, the anchor chain is cut and the vessel drifts. Although a ship is moored by two-point mooring lines to maintain her position, it has crashed into a rock because of a typhoon, resulting in a possible accidental oil spillage. In this paper, we studied maintenance of a ship's position, which is analyzed based on the slow motion maneuvering equations considering wave, current, and wind. To estimate wave loads, the direct integration method is employed. The current forces are calculated, using MMG (Mathematical Modeling Group). Th two-point mooring forces are quasi-statistically evaluated, using the catenary equation. Th coefficients of wind forces are modeled from Isherwood's empirical data, and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two-point moored ship are simulated, considering wave, current, and wind load, in specific domain of time.

Numerical Study on Current-Induced Switching of Synthetic Antiferromagnet

  • Lee, Seo-Won;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Synthetic antiferromagnets (SAFs) are used as free layer structures for various magnetic devices utilizing spintransfer torque (STT). Therefore, it is important to understand current-induced excitation of SAFs. By means of drift-diffusion and macrospin models, we studied the current-induced excitation of a SAF-free layer structure (NiFe/Ru/NiFe). The simulation results were compared with the previous experimental results [N. Smith et al., Phys. Rev. Lett. 101, 247205 (2008)]. We confirmed that a nonzero STT through the Ru layer is essential for explaining the experimental results.

Development of Capacity Spectrum Method for Shear Building to Estimate the Maximum Story Drift (전단빌딩의 최대 층간변위를 예측하기 위한 역량스펙트럼법 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Hyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.255-264
    • /
    • 2007
  • In the current domestic and overseas standards concerning seismic design, especially on the capacity & demand spectra in the multi-story building, failure is caused more by story drift than by displacement; and the existing capacity spectrum method (CSM) does not make a close estimate of story drift because response is derived using displacement. Therefore, this paper proposes an improved CSM to estimate story drift and its direct effect on the collapse of structures, yet still maintaining the same advantage and convenience of the existing CSM about a most basic model of multi-story building: shear building. To establish its reliability, the proposed method is applied to an example model and results are then compared with those obtained through nonlinear time-history analysis.

Influence of green roofs on the seismic response of frame structures

  • Bianchini, Fabricio;Haque, A.B.M. Rafiqul;Hewage, Kasun;Alam, M. Shahria
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.265-280
    • /
    • 2016
  • Environmental and operational benefits of green roofs are manifolds; however, their main disadvantages are cost and weight. New technology enabled the use of plastics to reduce the weight of green roof systems to promote their installation. To maximize their potential benefits, green roofs can be installed on existing structures. This study evaluates the influence of green roofs on the seismic response of 3, 6, and 8 storey reinforced concrete ductile moment resisting frames, which were designed according to current seismic standards, however, not designed for green roofs. For each frame, three different types of roofs are considered: gravel flat roof, extensive green roof, and intensive green roof. Nonlinear dynamic time history analysis using an ensemble of twenty real earthquake records was performed to determine the inter-storey drift demand and roof drift demand for each frame. Eigenvalue analysis was also performed to determine the impact of green roofs weight on the elastic and cracked periods of the structure. Results from the analysis demonstrated that intensive and extensive green roofs do not affect the seismic performance of reinforced concrete frame structures.

A Novel Active Anti-islanding Method for Grid-connected Photovoltaic Inverter

  • Jung, Young-Seok;Choi, Jae-Ho;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • This paper proposes a novel active frequency drift (AFD) method to improve the islanding detection performance with minimum current harmonics. To detect the islanding phenomenon of grid-connected photovoltaic (PV) inverters concerning the safety hazards and possible damage to other electric equipment, anti-islanding methods have been described. The AFD method that uses chopping fraction (cf) enables the islanding detection to drift up (or down) the frequency of the voltage during the islanding situation. However, the performance of the conventional AFD method is inefficient and causes difficulty in designing the appropriate cf value to meet the limit of harmonics. In this paper, the periodic chopping fraction based on a novel AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 929-2000 with power quality and islanding detection time. To verify the validation of the proposed method, the islanding test results are presented. It is confirmed that the proposed method has not only less harmonic distortion but also better performance of islanding detection compared with the conventional AFD method.

Active Frequency Drift Method for Islanding Detection Applied to Micro-inverter with Uncontrollable Reactive Power

  • Kwak, Raeho;Lee, June-Hee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1918-1927
    • /
    • 2016
  • This paper proposes active frequency drift (AFD) as an anti-islanding method applied to micro-inverters with uncontrollable reactive power. When using ordinary inverter topologies, such as full bridge inverters in photovoltaic systems, the islanding phenomenon can be detected with reactive power-based methods, such as reactive power variation. However, when the inverter topology cannot control the reactive power, conventional anti-islanding methods with reactive power cannot be utilized. In this work, the topology used in this paper cannot control the reactive power. Thus, an anti-islanding method that can be used in topologies that cannot control the reactive power is proposed. The conventional anti-islanding method of the topology that cannot control reactive power is introduced and analyzed. Unlike the conventional AFD method, the proposed method extends a zero current interval every predetermined cycle. The proposed method offers certain advantages over conventional AFD methods, such as total harmonic distortion. The proposed method is validated through simulation and experiment.