• Title/Summary/Keyword: Drift Calibration

Search Result 48, Processing Time 0.035 seconds

Blind Drift Calibration using Deep Learning Approach to Conventional Sensors on Structural Model

  • Kutchi, Jacob;Robbins, Kendall;De Leon, David;Seek, Michael;Jung, Younghan;Qian, Lei;Mu, Richard;Hong, Liang;Li, Yaohang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.814-822
    • /
    • 2022
  • The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.

  • PDF

Analysis of Measured Azimuth Error on Sensitivity Calibration Routine (Sensitivity Calibration 루틴 수행시 Tilt에 의한 방위각 측정 오차의 분석)

  • Woo, Kwang-Joon;Kang, Su-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The accuracy of MR sensor-based electronic compass is influenced by the temperature drift and DC offset of the MR sensor and the OP-amp, the magnetic distortion of nearby magnetic materials, and the compass tilt We design the 3-axis MR sensor and accelerometers-based electronic compass which is compensated by the set/reset pulse switching method on the temperature drift and DC offset, by the execution of hard-iron calibration routine on the magnetic distortion, and by the execution of the Euler rotational equation on the compass tilt. We qualitatively analyze the measured azimuth error on the execution of sensitivity calibration routine which is the normalization process on the different sensitivity of each MR sensor and the different gain of each op-amps. This compensation and analytic result make us design the one degree accuracy electronic compass.

Calibration Equation for VTA Including the Effect of Ambient Temperature Drift (온도변화를 고려한 가변온도형 열선유속계의 교정식)

  • Lee, Shin-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.99-104
    • /
    • 2000
  • Calibration equation for Variable Temperature Anemometer(VTA) has been tested for measured velocity-output data and the calibration process has been compared with that of Constant Temperature Anemometer(CTA). VTA has greater sensitivity than that of any other conventional anemometers, but to be more popular technique in flow field measurement, simple, accurate and well established calibration process should be suggested. To meet this purpose, similar calibration method used for CTA has been adopted for VTA and finally calibration equation for VTA including the effect of temperature drift has been proposed.

  • PDF

Automatic RF Input Power Level Control Methodology for SAR Measurement Validation

  • Kim, Ki-Hwea;Choi, Dong-Geun;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Evaluation of radiating radiofrequency fields from hand-held and body-mounted wireless communication devices to human bodies are conducted by measuring the specific absorption rate (SAR). The uncertainty of system validation and probe calibration in SAR measurement depend on the variation of RF power used for the validation and calibration. RF input power for system validation or probe calibration is controlled manually during the test process of the existing systems in the laboratories. Consequently, a long time is required to reach the stable power needed for testing that will cause less uncertainty. The standard uncertainty due to this power drift is typically 2.89%, which can be obtained by applying IEC 62209 in a normal operating condition. The principle of the Automatic Input Power Level Control System (AIPLC), which controls the equipment by a program that maintains a stable input power level, is suggested in this paper. The power drift is reduced to less than ${\pm}1.16dB$ by AIPLC, which reduces the standard uncertainty of power drift to 0.67%.

Analysis of Transfer Gyro Calibration Error Budget (전이궤도 자이로보정 오차버짓 해석)

  • Park, Keun-Joo;Yang, Koon-Ho;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.36-43
    • /
    • 2010
  • A GEO satellite launched by Arian 5 ECA launcher will be located in a transfer orbit where it requires several Apogee burn maneuvers to reach the target orbit. To obtain the required performance of Apogee burn maneuvers, a calibration of gyro drift error needs to be performed before each maneuver. In this paper, a unique gyro calibration scheme which is applied to COMS is described and the calibration error budget analysis is performed.

Dispersion constraints and the Hilbert transform for electromagnetic system response validation (전자기 탐사 시스템 반응의 타당성 확인을 위한 분산 관계식과 힐버트 변환)

  • Macnae, James;Springall, Ryan
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • As a check on calibration and drift in each discrete sub-system of a commercial frequency-domain airborne electromagnetic system, we aim to use causality constraints alone to predict in-phase from wide-band quadrature data. There are several possible applications of the prediction of in-phase response from quadrature data including: (1) quality control on base level drift, calibration and phase checks; (2) prediction and validation of noise levels in in-phase from quadrature measurements and vice versa and in future; and (3) interpolation and extrapolation of sparsely sampled data enforcing causality and better frequency-domain-time-domain transformations. In practice, using tests on both synthetic and measured Resolve helicopter-borne electromagnetic frequency domain data, in-phase data points could be predicted using a scaled Hilbert transform with a standard deviation between 40 and 80 ppm. However, relative differences between base levels between flight could be resolved to better than 1 ppm, which allows an independent quality control check on the accuracy of drift corrections.

Post-earthquake building safety evaluation using consumer-grade surveillance cameras

  • Hsu, Ting Y.;Pham, Quang V.;Chao, Wei C.;Yang, Yuan S.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • This paper demonstrates the possibility of evaluating the safety of a building right after an earthquake using consumer-grade surveillance cameras installed in the building. Two cameras are used in each story to extract the time history of interstory drift during the earthquake based on camera calibration, stereo triangulation, and image template matching techniques. The interstory drift of several markers on the rigid floor are used to estimate the motion of the geometric center using the least square approach, then the horizontal interstory drift of any location on the floor can be estimated. A shaking table collapse test of a steel building was conducted to verify the proposed approach. The results indicate that the accuracy of the interstory drift measured by the cameras is high enough to estimate the damage state of the building based on the fragility curve of the interstory drift ratio. On the other hand, the interstory drift measured by an accelerometer tends to underestimate the damage state when residual interstory drift occurs because the low frequency content of the displacement signal is eliminated when high-pass filtering is employed for baseline correction.

Drift Test Method of Meteorological Instrument for Type Approval (형식승인을 위한 측기의 드리프트 검사 방법)

  • Seo, Dae-Il;Lee, Kyung-Hun;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.927-932
    • /
    • 2022
  • Instrument drift is caused by the passage of time, environmental changes, normal wear and tear, debris buildup, sudden shock, vibrations, electromagnetic fields, and improper use. Since it is inappropriate to directly determine the change of the output value as drift during the limited test period, a new algorithm that reflects both zero drift and span drift by giving changes over time to the calibration method of the instrument was proposed. The temperature drift was calculated to be 0.49% for about 60 minutes at 1-minute intervals in the nine-step constant temperature environment through the warming and cooling process.

Measurement Uncertainty for Analysis of Volatile Organic Compound in Cigarette Mainstream Smoke (담배 연기 중 휘발성 유기물질 분석에 대한 측정 불확도 산출)

  • Ka, Mi-Hyun;Cho, Sung-Eel;Kim, Mi-Ju;Lee, Chul-Hee;Ji, Sang-Un;Jeong, Jong-Soo;Kim, Yong-Ha;Min, Young-Keun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.2
    • /
    • pp.144-151
    • /
    • 2006
  • A measurement uncertainty for analysis of volatile organic compound (benzene) in cigarette mainstream smoke was carried out. In this study one point re-calibration method was used to estimate uncertainty for benzene. The measurement uncertainty was calculated based on the uncertainty sources of each analysis step, quality appraisal sources, drift and repeatability. As a result, the concentration and expanded uncertainty of benzene in cigarette mainstream smoke were measured as $38.08{\pm}4.36{\mu}g/cig$. Relative uncertainty of drift and repeatability obtained were 5% and 3%, respectively.

A Study on the Stand-alone Inertial Navigation System with low-cost Inertial Sensors (저급 관성센서를 이용한 독립적인 관성항법시스템에 관한 연구)

  • Cho, Jae-Bum;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2270-2273
    • /
    • 2001
  • This paper presents calibration and alignment algorithms for low-cost inertial sensors. The error models for gyro and accelerometer are presented with a study of their effects. A navigational Kalman Filter is derived based on those error models. Test results are presented, which shows the initial calibration and alignment scheme and the proposed filter configuration effectively reduce the drift of the sensors and provide improved accuracy for its practical use for navigation.

  • PDF