• Title/Summary/Keyword: Dredging soil

Search Result 132, Processing Time 0.022 seconds

Electrophoretic Particle Movement in Suspension Considering the Gravitational Settling and Sedimentation of Clayey Soil (중금속으로 오염된 점성토의 동전기영동에 의한 침강 거동에 관한 연구)

  • Lee, Myung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2007
  • Contaminated sediments more than 30 million/$m^3$ is generated from dredging work for harbours and coastal maintenance in Korea. Approximately 300 million/$m^3$ of sediments is dredged to deepen harbours and shipping lanes in US and of which $3{\sim}12million/m^3$ is highly contaminated. Although much is known about technologies for the remediation of heavy metal contaminated soil, much less is known about the treatment of contaminated sediment. In general, negatively charged fine particles will migrate towards positively charged system of electrodes under the influence of electrophoresis. However, the electrically induced migration of colloidal particles contaminated with heavy metals may be hindered by the positively charged heavy metal contaminants adsorbed onto the soil surfaces depending on the contamination level. This paper demonstrates settling behaviour of clayey soil by comparison with electrophoretic particle movement under the effects of heavy metal contamination, applied electric field strength, and its polarity changed by the electrode configuration.

A Study on Characteristic of Sedimentation-Consolidation Conduct for Dredged Soil through Geo-Centrifuge Test (원심모형실험을 이용한 준설토의 침강압밀 거동 특성)

  • Park, Hyunchul;Kang, Hongsig;Sun, Seokyoun;Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • The costal reclamation construction is for making reclaimed land by dredging marine clay with seawater, and then bringing the dredged soil into the reclaimed land. During the process, the dredged soil in the reclaimed land undergoes the sedimentation-consolidation process. Among the processes, the consolidation is a very critical factor when planning reclaimed land because of its requiring time and settlement. In order to predict the requiring time and settlement, the Column test, which was suggested by Yano, has been usually used in the nation. However, the test method needs a very long time to identify the characteristic of sedimentation-consolidation of dredged soil. Therefore, in this study, in order to supplement the weakness of the Column test which needs such a long time, and in order to identify the characteristic of the sedimentation-consolidation for dredged soil in a short time, the Geo-centrifuge test was examined as an alternative method. The result considered that Geo-centrifuge test would be useful to identify the characteristic of sedimentation-consolidation for dredged soil efficiently.

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Suitability Evaluation of Containment Area Design Considering Suspended Solid Sedimentation (부유물 침전을 고려한 준설투기장 설계의 적합성 평가)

  • Jee, Sunghyun;Kim, Chanki;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.41-48
    • /
    • 2010
  • In this study, grain size distribution of dredged soil and suspended solid distribution of supernatant in containment area were measured and compared with design prediction for suitability evaluation on prediction of suspended solid concentration of supernatant in conventional design of containment area. In addition to that, relationship were also analyzed between current velocity and suspended solid concentration of supernatant. Evaluation results show a relatively good agreement between field measurement and design prediction. On contrast, field measurement and design prediction show a quite different value each other in the early stage of dredging or at a point that current velocity increases. It is believed that this is due to that conventional design method of containment area does not account for ponding depth and current velocity which change sensitively with dredging period. Since current velocity and distribution of suspended solid concentration measured simultaneously show a similar trend, it is observed that there exists a close relationship between current velocity and distribution of suspended solid concentration. Therefore, a new design method for containment area, which can consider sedimentation of suspended solid that changes with interface height of dredged soil, ponding depth, current speed of supernatant, is necessary in order to predict the situation change of containment area more precisely.

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

Impact of the Geochemical Characteristics and Potential Contaminants Source of Surrounding Soil on Contamination of a Reservoir in an Island (I) - Evaluation of Potential Liquation by Sediment - (주변토양의 지구화학적 특성과 잠재적 오염원이 도서지역 저수지의 오염부하에 미치는 영향(I) - 퇴적토에 의한 잠재적 용출특성 평가 -)

  • Park, Sun-Hwan;Park, Wan-Sub;Kim, Chang-Gyun;Park, Joong-Gyu;Kim, Wan-Hee;Chang, Yoon-Young;Jeong, Jeong-Ho;Lee, Sun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.107-116
    • /
    • 2010
  • In this research potential liquation of contaminants from surrounding soil to a reservoir in an island was studied to investigate the cause and route of contamination of Baengyeong-myeon reservoir. Soil of Baengyeong-myeon reservoir consists of $SiO_2$ and has a high iron content because of geological characteristics of its country rock. From the field investigation and simulation study it was found that highly accumulated carbon content in the reservoir sediment was incurred from ground water, which provides a good habitat for microbes. And the liquation, the cause of organics growth, occurs mainly on the bottom of the reservoir consisting marine clay layer once used as farmland. So dredging of the sediment of reservoir and replacing with valley soil is suggested to prevent continuous contamination of a reservoir in an island due to COD production.

Assessment for Amount Increment of Dredged Soil using infiltrated consolidation method (침투압밀공법을 이용한 준설투기용량 산정)

  • Kwak, No-Kyung;Lee, Mu-Cheol;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1198-1209
    • /
    • 2009
  • In this study, an experimental research on the acceleration effect of dredged soil's self weight consolidation with seepage consolidation and PBD was conducted. The middle-sized consolidation equipment had been manufactured in order to investigate the acceleration of sedimentation and self-weight consolidation by PBD and a lower drainage. Seepage pressure was applied to the PBD installed in the center of the test equipment and a drainage by seepage pressure was allowed. The comparison between cases with and without PBD and seepage pressure reveals that the quantity of drained water and the amount of settlement was nearly 1.2 times to 3.68 times greater in the case with PBD and seepage. Early consolidation completion and the use of reclaimed site are expected due to the acceleration of settlement and increase of the quantity of reclamation if PBD is installed while being reclaiming using the result of the research.

  • PDF

Evaluation on Field Application of Controlled Low-Strength Materials Made of Coal Ash in Reclamation Site (석탄회를 활용한 저강도고유동화재의 공유수면매립현장에 대한 적용성 평가)

  • Kong, Jin-Young;Jung, Hyuk-Sang;Cho, Sam-Deok;Kim, Ju-Hyong;Hyun, Jae-Hyuk;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.27-39
    • /
    • 2012
  • This paper presented the strength and environmental characteristics of reclaimed-ground filled with controlled low-strength materials (CLSM) made of coal ash, small amounts of cement, and water in a reclamation site and evaluated the possibility of the use of coal ash on reclamation materials for beneficial use. Three-month period of SPT, CPT, environmental effects evaluation etc. were conducted. N values and cone resistances in ground filled with CLSM were greater than or similar to those in dredging sand. In case of land filled with coal ash except cement these values were lower than those in dredging sand. The results of soil and seawater pollution were lower than test criteria without high pH. Also the values of PH test were measured between pH 5.0~9.0, the criteria of industrial water in the Law for the Underground Water of Korea.

The Analysis of Water and Soil Environment at Farm Pond Depression (농지연못습지의 수질 및 토양환경 분석)

  • Son, Jin-Kwan;Kang, Bang-Hun;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.46-62
    • /
    • 2010
  • This study was conducted to understand the water and soil properties to propose the promotion of vegetation environment at farm pond depression. We selected 8 palustrine wetlands from agricultural area after consideration of human interference, surround land use, and size of area. Water quality analysis showed that the average SS, T-N, T-P were over the limit of agricultural water quality standard level at some sites. The cause for deterioration of water quality is supposed by the long-term stagnation of water in palustrine wetland. The recommended measures to improve water quality are as follows; improving water circulation by connecting with nearby natural water, preventing oxygen depletion by dredging deposit, lowering down T-N and T-P by removing autumn plants, preventing inflow of phosphorus in fertilizer ingredients which is the main cause for high T-P. The soil contamination of the surveyed area was about the same level of average heavy metal contents in soils from 2,010 paddy fields in Korea, which was much lower than soil contamination standards. As for soil texture, sand content was 40~90% and clay content was less than 20%. The content of silt and clay in soil from community of floating-leaved:submerged hydrophytes and community of emergent hydrophytes was higher that of soil from community of hygrophytes, and the content of sand in soil from community of hygrophytes was 10% higher than underwater soil. In terms of bulk density, the average was 0.24~0.96g/$cm^3$, which was quite low, because of high content of peat and organic matter in soil of the surveyed area. As for the average content of organic matter, community of floating-leaved:submerged hydrophytes was 18.25g/kg, community of emergent hydrophytes was 16.88g/kg, and community of hydrophytes was 25.63g/kg. The range of content of T-N in soil of community of floating-leaved;submerged hydrophytes was 0.022~0.307%, and that of community of emergent hydrophytes was 0.029~0.681% and that of community of hydrophytes was 0.088~0.325%. Apart from three sites in the surveyed area, most parts were over the standards or below the standard. After this study, we will conduct and discuss the relationship between vegetation characteristics and environments, which will be used of the best practical management and restoration of wetland.

A Survey of Water Quality and Improvement Measure of Imjin-River (임진강수계의 수질조사 및 개선방안)

  • 김형진;백영석;이준석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.66-75
    • /
    • 1995
  • This survey is executed about the water quality and improvement measure of Imjin- river. The results are summarized as follows; 1 ) Ammonia nitrogen concentration in tap water was two times higher than drinking water standard. 2) The concentration of BOD in textile wastewater was 235ppm which is higher than wastewater distribution standard and leather wastewater showed high nitrogen concentration. 3) Water quality of the Imjin- river upstream was not in problem but that of Shin- stream showed somewhat high concentration in BOD, COD, and ammonia nitrogen. Especially the detected Cynide compound on the lower of Shin- stream implied seriously polluted condition. 4) The heavy metal in soil of the river bed was not detected but iron, zinc was detected to high concentration. 5) It Is urgently suggested to build more municipal sewage and sanitary treatment plants, and run dredging and river bed rearrangement project. 6) The Construction of the wastewater treatment complexes of relevant industries shall be propelled as soon as possible.

  • PDF