• Title/Summary/Keyword: Dredged sediment

Search Result 73, Processing Time 0.025 seconds

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

Estimate on the Self-Weight Consolidation of Dredging Coarse Soil with Segregating Sedimentation Properties (분리퇴적특성을 고려한 조립준설토의 자중압밀 침하량 평가)

  • Kim, Hyeong-Joo;Lee, Min-Sun;Paek, Pil-Soon;Jeon, Hye-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.5-14
    • /
    • 2006
  • In general, the dredged ground was composed of a big difference of sediment shape through segregating sedimentary of finer soil in case of reclaiming by dredged coarse soils. Therefore, this study was performed to evaluate the change of settling velocity of flow, and the density of sedimentary which is based on settling tests and self-weight consolidation tests, and consolidation test by seepage force according to the percentage of coarse of Kunsan dredge soils. The Yano's method has been applied to estimate the settlement of self-weight consolidation in finer soils at design but it only considers pouring water content and elevation of interface, therefore the other method needs to be introduced for the exact prediction of the settlement of coarse soil in which the segregation sedimentation is occurring. In this study, the settlement of self-weight consolidation was calculated by the change of the density of segregating sedimentary of coarse and finer soils which was analyzed by Yano's method to extend a serious of researches. The self-weight consolidation by Yano's method will not reflect the segregated settling in dredging coarse soil under 40% of #200 passing percentage. As a result, the evaluation technique of settlement of self-weight consolidation considering a change of the density of segregating sedimentary is suggested as a reasonable method that considers the sediment shape of coarse soil.

Characteristics of the Segregation Sedimentation for Dredged Soil Depending on Fines Content (세립분 함량에 따른 준설토의 분리 퇴적 특성)

  • Park, Minchul;Lee, Jongkyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • Dredged and reclaimed ground in progress at the West Coast has a high content of coarse particles. There will be different behaviors depending on the location of outlet and engineering properties of soil when its ground is dredged by a pump. Therefore, the experiments were conducted that were manufactured about the chamber equipment of length 2,650mm, width 770mm, height 735mm, experimented step filling method and water content about 300%, 500% and 700% respectively with SM and ML samples in order to realize segregating sediment characteristics of dredged ground with changing much fine. With results of analysis, ML sample by higher initial water content was reached to the period of complete sedimentation and coefficient of sedimentation consolidation increased with increases of diffusion distance. SM samples showed behavior of coarse soil with diffusion distance 120cm, diffusion distance of more than 120cm showed a similar tendency with ML sample under the influence of fines. In ML sample, it could be also found that lower depth and the more increasing diffusion distance increase in percentage of sieve #200 but water content decreases. In SM sample, it could be also found that coarse soil was piled at near the diffusion distance zone but fine soil was piled at the far diffusion distance zone and prominent difference showed between percentage of sieve #200 and water content(%) by boundary point 120cm~160cm of both samples. Also, shear strength was expressed ML-maximum 2.97kPa, SM-maximum 10.2kPa with diffusion distance.

Improvement of the Marine Environmental Assessment for Dredging and Ocean Disposal of Coastal Sediment in Korea (연안준설 및 준설토 해양투기 해양환경평가 개선방안)

  • Lee, Dae-In;Park, Dal-Soo;Eom, Ki-Hyuk;Kim, Gui-Young;Cho, Hyeon-Seo;Kim, Jong-Kyu;Seo, Young-Kyo;Baeck, Gun-Wook
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.131-141
    • /
    • 2009
  • We studied improvement in marine environmental impact assessment and related management systems of coastal sediments that are dredged inshore but disposed offshore. After reviewing and diagnosing the existing assessment procedures and problems, we recommend to design the core assessment items and improve the reliability of assessment byenhancing the quality assurance/quality control (QA/QC) and verification processes. We proposed eco-friendly disposal plan for dredging sediment such as reuse system in land development was explored. A marine environmental database system was established to support the assessment processes. Guidelines for marine research and modelling were proposed for improving assessment of dredging and disposal of coastal sediment. Also, applying of screening and scoping for marine environmental assessment was reviewed.

Chemical Forms and Release Potential of Heavy Metals from the Lime Treated Sediments (석회 처리에 의한 오염 퇴적물 내 중금속의 형태 변화 및 용출 가능성)

  • Park, Gil-Ok;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2008
  • Chemical forms and release potential of heavy metals were studied in the lime treated sediment of lake Chungcho. Chemical forms of heavy metals were analyzed using a sequential extraction method, and release potential of heavy metals was evaluated by the ratio of the content of labile forms to total metal one. Dominant form of Cd, Cu, Pb, and Zn in the untreated sediments was organic/sulfidic form that is stable in the reducing environment such as the bottom of Lake Chungcho. With liming of the sediment, the chemical forms of studied metals were greatly changed from organic/sulfidic form to adsorbed and reducible form, especially Cd and Cu to adsorbed and reducible form, but Pb and Zn to reducible form. It is believed that increase of unstable form of heavy metals in the sediments by liming was caused by the increase of pH of the pore water at the expense of organic/sulfidic form. Thus, we concluded that the liming approach currently used in the treatment of dredged sediments might cause the increase of labile form which is easily dissolved, and may increase the release of metals from the sediment into overlying water.

Consolidation Settlement of Capped Sediment (II): Advective Transport of Pore Water and Analytical Prediction of Settlement (캡이 설치된 퇴적층의 압밀 침하 (II): 간극수의 이동 및 침하의 해석적 예측)

  • Kim, Tae-Hyung;Hong, Won-Pyo;Moo-Young, Horace-K
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.39-44
    • /
    • 2003
  • Centrifuge test was conducted to simulate the effects of consolidation settlement of capped contaminated marine sediment. A fluorescent dye was used to monitor the movement of pore water through the cap layer. Dye tracer study clearly showed the consolidation induced advective transport of contaminants. Thus, the capping layer must be appropriately designed to reduce the effects of consolidation induced advective transport. The results from the centrifuge test were compared to predictions made by the Primary consolidation, Secondary compression, and Desiccation of Dredged Fill (PSDDF) computer program, which can qualitatively estimate the consolidation settlement of capped marine sediment. Although PSDDF approximated closely the secondary compression in the centrifuge test (i.e., compare data points from 18 to 25 prototype years), the maximum deviation between centrifuge test result and PSDDF prediction was 20 % about prototype time 6 years. Thus, designers should utilize PSDDF consolidation settlement results with caution.

Numerical Study of Contaminant Transport Coupled with Large Strain Consolidation

  • Lee, Jang-Guen
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.45-52
    • /
    • 2008
  • Contaminant transport has been widely studied in rigid porous media, but there are some cases where a large volumetric stain occurs such as dewatering of dredged contaminated sediment, landfill liner, and in-situ capping. This paper presents a numerical investigation of contaminant transport coupled with large strain consolidation. Consolidation test was performed with contaminated sediments collected in Gary, Indiana, U.S. to obtain constitutive relationships, which are required for numerical simulations. Numerical results using CST2 show an excellent agreement with measured settlement and excess pore pressure. CST2 is then used to simulate contaminant transport during and after in-situ capping. Numerical simulations provide that transient advective flows caused by consolidation significantly increase the contaminant transport rate. In addition, the numerical simulations revealed that active capping with Reactive Core Mat (RCM) significantly decelerates consolidation-induced contaminant transport.

Determination of Characteristics of Laboratory Test and Proper Specification of Reformed Dredging Soil for Applying Pipe Mixing Method (관중혼합공법의 적용을 위한 개질처리 준설토의 실내실험 특성 및 적정 규격 결정)

  • Jeon, Sangok;Kang, Byungyoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.15-24
    • /
    • 2022
  • In order to improve dredged area, long time and high cost is needed because of bad engineering and physical conditions. And there is no suitable example of pipe mixing method at domestic site. Moreover, applicability and effectiveness of this method is uncertain and shows different results between site and laboratory test. In order to solve these problems, we determined proper grain size distribution and water content range using dredged soil and reformed material (standard sand & material controlling grain size distribution) in the laboratory test. As a result, we confirmed that coefficient of sediment consolidation is increased and there is an improvement about separation sedimentation. Undrained shear strength was derived by water content of reformed dredging soil through regression analysis of test results. We suggest the correlation equation for determining mixing ratio.

Diagenesis of the Carbonate Rocks of the Seamounts In the Federated States of Micronesia, Central Pacific (중앙태평양 마이크로네시아 군도 해저산 일원에서 발견되는 탄산염암의 속성작용)

  • Woo, Kyung-Sik;Choi, Yoon-Ji;Lee, Kyeong-Yong;Kang, Jung-Keuk;Park, Byong-Kwong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.214-227
    • /
    • 1998
  • This study was carried out to investigate the composition and diagenesis of the carbonate rocks from the seamounts in the Federated States of Micronesia, Central Pacific. Most of the samples were dredged from the water depth of about 1000-3000 m mainly in Chuuk Island, Hunter Bank, Caroline Ridge and Yap Trench. The carbonate rocks are either pelagic sediment mainly of planktonic foraminifera or shallow-marine sediment of corals, calcareous algae, mollusks and echinoderms. The rocks are altered texturally and chemically, except for those from the Hunter Bank and Yap A. The presence of shallow-marine cements suggests that the carbonate sediment has been subsided or reworked to the present water depth after deposition in shallow-marine environments. The texture of the carbonate sediment is reminiscent of meteoric diagenesis; however, the stable carbon isotopic composition of the altered rock samples shows affinity with that of sea water and the oxygen isotopic values are slightly enriched or same as compared to those of unaltered samples. These stable isotopic data suggest that the carbonate sediment of the study area has been diagenetically altered in the present deep-marine environment.

  • PDF

A Study on the Sedimentation of Dredged Soils and Shape Changes of a Transparent Vinyl Tube by Filling Tests - Anti-Crater Formation - (준설토 주입방법에 의한 비닐튜브체의 퇴적 및 변형 특성 - 크레이터 방지 기술을 중심으로 -)

  • Kim, Hyeong-Joo;Sung, Hyun-Jong;Lee, Kwang-Hyung;Lee, Jang-Baek
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, two different types of dredged fill injection methods are introduced and filling experiments were conducted to analyze the impact of each technique to the distribution and deposition of dredged soil fill and how it influence the final tube shape. Two transparent plastic tubes were fabricated to observe the deposition behavior of the deposited fill material. Both tubes measured 4.0 meters in length (L) and has vinyl tube diameters (D) of 0.5m and 0.7m. T-type and I-type inlet system are also introduced in this paper. The influence of this inlet systems to the distribution and deposition behavior of dredged soil fill inside the vinyl tubes were observed during the experiment. After the sedimentation of the slurry mixture, the water on top of the soil sediments are removed and the slurry mixture was re-injected into the vinyl tube, this process was carried out repeatedly. The shape changes of the vinyl tube, e.g. the changes in both tube height and width, are constantly monitored after each slurry injection and water draining phases. Crater formation was observed in the case of I-Type inlet system and a non-uniform sediment distribution occurred. For the diffusion deposit of soil particles to long distance are minimal shape technique using the T-Type inlet system. Therefore the undrain filling height ratio ($H/D_0$) was found to be around 0.54 to 0.64 and the horizontal strain ratio ($W/D_0$) ranges from 1.45 to 1.54. The filling soil height is proportional to dredged-material filling phases, but, horizontal strain ratio is constant or inversely reduced so that the center of tube body is raised in the upward direction.