• Title/Summary/Keyword: Drawing analysis

Search Result 1,539, Processing Time 0.025 seconds

Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank (레이저 용접 소재의 디프 드로잉 성형특성 해석)

  • Kim, Yeong-Seok;Ha, Dong-Ho;Jeong, Gi-Jo;Seo, Man-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

Analysis of Deep Drawing of Planar Anisotropic Materials Using the Rigid- Plastic Finite Element Method (강소성 유한요소법을 이용한 평면 이방성 재료의 디프 드로잉 해석)

  • 김형종;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.248-258
    • /
    • 1992
  • Three-dimensional rigid-plastic finite element formulation based on the membrane theory was described and a computer program for large deformation analysis was developed. In the formulation, normal and planar anisotropy of sheet material and rotation of the principal axes of anisotropy was taken into consideration. Sheet metal was assumed to be rigid-plastic material obeying Hill's quadratic yield criterion and its associated flow rule. Deep drawing process, as a preliminary test, for normal anisotropic material was analyzed in order to examine the validity of developed finite element program. The results were consistent with the existing finite element solutions or experimental data. The present study was mainly concerned with the influence of planar anisotropy on deformation behaviour. Finite element analysis and experiment were carried out for the whole process of deep drawing of planar anisotropic material. The computational and experimental results on the shape of ear, strain distribution and punch load were in good agreement.

Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition - (탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 -)

  • 심현보;정완진;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1129-1137
    • /
    • 1990
  • Based on the formulation which incorporates large deformation and anisotropy, an elastic-plastic finite element code is developed with membrane element to include the contact treatment. For the analysis of the general sheet metal forming process with contact condition, the treatment of contact is considered by employing the successive skew coordinate system. Three kinds of sheet metal forming processes with contact conditions are analyzed; stretching of a square diaphragm with a hemispherical punch, deep drawing of a circular cup and deep drawing of a square cup. Then the computational results are compared with the experiment. The computed loads and the distribution of the thickness strain are in good agreement with the experiment for all cases. However, the computational results of the thickness strain show the effect of bending can not be ignored in the deep drawing process whereas the effect of bending is negligible in stretching.

Mathematical Modeling of Zone Drawing Process

  • Kim, Hyungsup;Cho, Kwang-Soo;Ji, Byung-Chul
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.206-212
    • /
    • 2004
  • To provide guidelines and a basic understanding of static and continuous zone drawing processes, we propose two different mathematical models in terms of the processing conditions and material parameters. Although the models are not finely tuned, because of assumptions made, they are still useful for the analysis of the process and for predicting the processibility.

A study on the drawing characteristics of drawbead by F.F.M (유한요소법에 의한 드로오비드 인출특성 연구)

  • 신양호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.42-47
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method by varying the process variables such as friction coefficient, drawbead radius, and closing depth. Numerical analysis are carried out by 2-D elastic-plastic F.E.M. The results are compared with the existing experimental results about the drawing force, the die clamping force, and the strain distribution of upper and lower sheet faces

  • PDF

Finite Element Analysis of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 디프드로잉 공정의 유한요소해석)

  • 윤정환;유동진;양동열;김석관
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.468-481
    • /
    • 1994
  • Mathematical description of arbitrarily-shaped tool surface are introduced by parametric patch approaches along with the related contact search algorithm. In order to maintain the advantages of membrane elements and to incoporate the bending effect, a BEAM(Bending Energy Augmented Membrane) element is proposed. Computation are carried out for some complex axisymmetric multi-stage deep drawing to verify the validity and the effectiveness of the proposed method.

  • PDF

Evaluation of Horizontal Position Accuracy in Forest Road Completion Drawing (임도 준공도면의 수평위치 정확도 평가에 관한 연구)

  • Kim, Myeong-Jun;Kweon, Hyeong-Keun;Choi, Yeon-Ho;Yeom, In-Hwan;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2010
  • Forest roads of 16,424km have been constructed as infrastructure for efficient management of forest. The demand of forest road have been also increased steadily with SOC conception for forest management and wood production. But, accuracy verification by completion drawing of forest road needed aspects extration of geographic information to sound like forest road construction and completion drawing. However, verification for completion drawing has not ascertained. This study carried out the evaluation for position accuracy about constructed forest road in Chungcheongnam-do for evaluating horizontal position accuracy of completion drawing of forest road. In result, first of distance of completion drawing and real route designed completion drawing longer than the real route as Gongju 83m, Seosan 66m, Nonsan 27m and Dangjin 19m, respectively. Second, RMSE by point-correspondence was 11m~14.7m, buffering analysis appeared difference of 18~24m. Finally, index of shape was the similar completion and real route through 6.5~7.4 and data information of forest road corresponds to be perfect. For such reasons, the existing completion drawings have a problem that it cannot use graphic information for drawing digital map according to the regulation, and there is an urgent need for improvement to solve this problem in the process of design and construction.

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

Finite Element Inverse Analysis of the Deep Drawing Process Considering Bending History (굽힘이력을 고려한 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.590-595
    • /
    • 2007
  • This paper introduces a new approach to take account of bending history in finite element inverse analysis during sheet metal forming process. A modified membrane element was adopted for finite element inverse analysis so that bending-unbending energy was additionally imposed in the total plastic energy, predicting bending-unbending regions using the geometry of the final shape and tools. An algorithm was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain were compared with those obtained from the incremental finite element analysis in order to evaluate the effect of the bending history. The algorithm reduced the difference between the results of the inverse analysis from those of the incremental analysis due to bending history. The analysis was also carried out with the variation of the thickness of the initial blank to investigate the effect of bending deformation. The results showed that the difference was remarkably reduced as the thickness of the initial blank increased. This indicates that the finite element inverse analysis cooperated with the suggested scheme is useful to obtain more accurate results, especially when bending effects are significant.