• Title/Summary/Keyword: Drawing Analysis

Search Result 1,534, Processing Time 0.03 seconds

Fabrication of Drawing Wire for Cold Rolling Mill using Tungsten Carbide Multi-Stage Dies (초경 다단 다이를 적용한 냉간 압조용 인발 선재 제조)

  • Park, D.H.;Hyun, K.H.;Lee, M.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.97-102
    • /
    • 2020
  • Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through multi-stage drawing dies. The aim of this study is to fabricate a drawing wire using 2 stage drawing process. The finite element analysis of wire drawing was conducted to validate the efficiency of the designed process and the experiment was performed to validate the designed wire drawing process using 2 stage tungsten carbide die. Dry lubricant with powder was applied for producing a wire of desired diameter. Finally, a drawing wire using 2 stage die for cold rolling mill was developed.

Finite Element Analysis for the Drawing of Square Rod from Round Bar (원형봉에서 정사각재 인발공정의 유한요소 해석)

  • Choi, Y.;Kim, H.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.205-209
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also comer filling. Therefore, this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conduction. By this results, it has to suggest optimal process condition on the drawing stress and the comer filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

Multi-Stage forming Process Applied to Warm Drawing of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 드로잉에서의 다단 성형 공정 적용)

  • Kim, H.K.;Kim, G.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.242-245
    • /
    • 2007
  • In the present investigation, the multi-stage warm drawing process was applied to the magnesium alloy AZ31 sheet to examine the feasibility of multi-stage forming process as a high formability product making process. For that purpose, a multi-stage drawing die system with heating module was developed, and the AZ31 sheets of different sizes were consecutively drawn by the multi-stage drawing die. The obtained drawn cups of AZ31 showed that the multi-stage drawing provided the better formability than the single stage drawing in terms of drawing depth without cup defects such as wrinkles or fractures. The sheet formability improvement by using the multi-stage drawing die system against the single stage was also analyzed in terms of the finite element analysis of material state variables evolution.

  • PDF

A Study on the Process Analysis of Multi-Stage Deep Drawing (다단계 디프드로잉의 공정해석에 관한 연구)

  • 심재진;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2936-2948
    • /
    • 1993
  • Multi-stage deep drawing is an important sheet metal forming process. The deformation mechanisms of sheet metals during forming processes are complicated mainly due to the geometry and the lubrication of tools involved, the formability and the anisotropic behaviour of the material. The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. The anisotropic behaviour represented by r-value can be incorporated into the formulation. Punch/die loads and thickness distributions were obtained as results of simulating axisymmetric deep drawing processes. The computed results showed good agreements with experiments.

The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  • Choe, Yeong;Lee, Gyu-Ho;Go, Dae-Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF

Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History (굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

An Analysis of Students' Drawing Outcomes and Drawing Activities in the First Term of 3~4th Grade Teacher's Guide and Supplementary Books Developed under the 2007 National Curriculum (2007년 개정 3, 4학년 1학기 교사용 지도서 및 실험 관찰에 제시된 그림그리기 활동과 학습 결과 분석)

  • Park, Heon-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.4
    • /
    • pp.496-504
    • /
    • 2010
  • In this study, we analyzed request methods and demanding levels of drawing activities in teacher's guide and supplementary book (experimental observation). Student's drawing results were also compared to teacher's guide and supplementary books demanding. As a result, drawing activities of supplementary book were reached to 42.8% of all activities. Activity types were divided to writing, drawing, writing and drawing and writing or drawing activities. Writing and drawing activity type was 44.4%, and drawing activity was 37.8%. The level of teacher's guide were higher than normal needs. But answer examples and learning levels of teacher's guide were appropriate for curriculum levels. The students drawing activities were matched to requirements of the teacher's guide to 72.3% in grade 3 level and 64.5% in 4th grade level. In order to improve effectively learning, statement of supplementary book and teacher's guide should write more concrete words and creative sentences.

  • PDF

Characteristics on the Warm Deep Drawability of Transformation-Induced Plasticity Steel Sheet (가공유기변태 강판의 온간 디프드로잉 성형 특성)

  • Kong K. H.;Choi C. S.;Choi Y. C.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.162-167
    • /
    • 2000
  • The warm deep drawability in square cup drawing is investigated about a newly developed high-strength steel sheet with retained austenite which is transformed into martensite during forming. For this investigation, six steps of temperature ranges, from room temperature to $250^{\circ}C$, and five kinds of drawing ratio, from 2.2 to 2.6 were adopted. As a result the maximum drawing force and the maximum drawing depth were affected by the elevated temperatures, and the more stable thickness strain distribution was observed to the elevated temperatures. But blue shortness happened over $200^{\circ}C$. The FEM analysis using the LS-DYNA code is adopted to compare the experimental results with the analytical results for thickness strain distribution.

  • PDF

Characteristics of the Warm Deep Drawability of a Transformation-Induced Plasticity Steel Sheet

  • 서대교;장성호;공경환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.221-221
    • /
    • 1999
  • Warm deep drawability in a square cup drawing was investigated using a newly developed high-strength steel sheet with retained austenite that was transformed into martensite during formation. For this investigation, six different temperatures between room temperature and 250℃, and five different drawing ratios ranging from 2.2 to 2.6 were considered. The results showed that the maximum drawing force and the drawing depth were affected by the change in temperature, and a more stable thickness strain distribution was observed at elevated temperatures. However, blue shortness occurred at over 200℃. FEM analysis using the LS-DYNA code was used to compare the experimental results with the numerical results for the thickness strain distribution.