• Title/Summary/Keyword: Draw bead

Search Result 50, Processing Time 0.017 seconds

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Investigation of Draw-bead Free Die Design to Prevent Wrinkles for Stainless Steel Basket-bowl Production (무비드 성형 조건에서 스테인리스 강 Basket-bowl의 주름 방지를 위한 금형 설계 연구)

  • S. Lee;C. H. Jeon;S. Park;G. Lee;S. Choi;W. Lee;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.199-207
    • /
    • 2023
  • The stainless steel basket-bowl, a critical component of washing machines, is characterized by its unique two-tiered circular shape. This study explores the potential of a draw-bead free die design to address tearing concerns in the prospective plastic layer during the drawing operation. In order to prevent wrinkles that may arise from the absence of a draw-bead, a two-stage punch configuration is proposed. The influence of the blank holder force on wrinkle reduction is also examined. Finite element analysis is employed to evaluate the proposed die design by analyzing the wrinkle shape and strain mode. The results confirm that the stainless steel basket-bowl can be successfully drawn without wrinkles utilizing the proposed two-stage punch without a draw-bead on the blank holder. These findings contribute to the development of more efficient and reliable manufacturing processes for the stainless steel basket-bowl production.

DEVELOPMENT OF EVALUATION METHOD FOR FRICTIONAL CHARACTERISTICS OF ZINC COATE STEEL SHEET

  • Kim, Young-Suk-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.71-82
    • /
    • 1992
  • The frictional characteristics of Zn-Ni coated steel sheets were investigated by draw bead test and strip draw test. In strip draw test, the frictional characteristics were evaluated by the drawing force ratio (Tc/Ts) for half coating-stripped specimens. It is clarified that the drawing force ratio obtained by strip draw test is a convenient parameter compared to coefficient of friction obtained by draw bead test to evaluate the frictional characteristics of Zn-Ni coated steel sheets.

  • PDF

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.

Study on Design Parameters in a Stamping Process of an Automotive Member with the Simulation-based Approach (해석적인 방법을 이용한 복잡한 형상의 자동차 부재 스탬핑 공정에서의 주요 설계인자 연구)

  • Song J. H.;Kim S. H.;Kim S. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is concerned with the quantitative effect of design parameters on a stamped part of the auto-body. The considered parameters in this paper are the blank holding force, the draw-bead force, the blank size which greatly affect the metal flow during stamping. The indicators of formability selected in this paper are failures such as tearing, wrinkling and the amount of springback. The stamping process of the front side inner member is simulated using the finite element analysis changing the design parameters. The numerical results demonstrate that the blank holding force cannot control the local metal flow during forming although it controls the overall metal flow. The modification of the initial blank size considering the punch opening line ensures the local wrinkling and reduces the amount of springback after forming. The restraining force of draw-bead controls the metal flow in the local area and reduces the amount of excess metal. It is noted that the parametric study of design parameters such as blank holding force, the blank size and the draw-bead are very important in the process design of the complicated member.

A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

Forming Analysis of the Front Side Member using Equivalent Draw-bead for Crashworthness Assessment (등가 드로오비드를 적용한 Front Side Member의 성형해석 및 충돌평가)

  • Song, J.H.;Kim, K.P.;Kim, S.H.;Huh, H.;Kim, H.S.;Hong, S.G.
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2003
  • This paper is concerned with forming analysis of Front Side Members and effects of the forming analysis on crash analysis of an auto-body. For efficient forming analysis, equivalent draw-bead restraining forces are calculated with ABAQUS/Standard and then used as the boundary condition in forming simulation. In order to demonstrate the validity of the forming analysis, the thickness variation in the numerical simulation result is compared quantitatively with the one in the real product. Forming histories obtained kom the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness. Crashworthiness such as the load-carrying capacity, crash mode and the energy absorption is evaluated and investigated for the identification of forming effects.

A study on the factors affecting to material inflow in the drawing process (드로잉 공정에서 소재 유입에 영향을 미치는 인자에 관한 연구)

  • Lee, Sung-Min;Shin, Jin-Hee;Kim, Kyung-A;Lee, Chun-Kyn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • Sheet Metal Forming by Press Forming Process takes a lot of time and cost from mold design to manufacturing. Therefore, all of die-makers are continuously conducting research to reduce the number of mold processes or the size of blanks to reduce costs. In the case of Forming complex shapes such as automobile component, wrinkles and cracks occur, so draw beads are used. Draw beads play an important role in suppressing the inflow of materials and minimizing the size of blanks. Factors that affect material flow include draw bead, blank holding pressure, lubricant, and surface roughness of punch and die. Most of the factors affect friction. In this study, after classifying circular beads and rectangular beads in cylindrical drawing molds using the AutoForm analysis program, the factors affecting the material inflow were considered.

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF