• Title/Summary/Keyword: Draw

Search Result 3,689, Processing Time 0.03 seconds

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

A Study on Fabrication of Polyester Copolymers (IV) - Physical Properties of PET/BPA Copolymer - (폴리에스테르 공중합체의 Fabrication 연구(IV) - PET/BPA 공중합체의 물리적 특성 -)

  • 현은재;이소화;제갈영순;장상희;최현국
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2001
  • PET/BPA copolymer of terephthalic acid, bisphenol-A and ethylene glycol was melt-pressed and quenched in ice water. This copolymer film was drawn by capillary rheometer. Shrinkage, crystallinity, morphology, thermal, dynamic mechanical, and mechanical properties of these copolymer films were investigated. The PET/BPA copolymer film exhibited T$_{m}$ lower than that of PET film. The crystallinity and density of these drawn copolymer films increased with draw ratio and draw rate but decreased with draw temperature. The tensile strength and tensile modulus of the copolymer films increased with draw ratio but decreased with draw temperature. Shrinkage of the drawn copolymer film decreased with draw ratio and draw rate.e.

  • PDF

A Study on the Forming of Automotive Front Side Member Part with Ultra High Strength Steel of DP980 (980MPa급 초고장력 강판의 자동차 프런트 사이드 멤버 부품 성형에 관한 연구)

  • Cha, C.H.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • This paper is concerned with forming technology of an automotive front side member part with ultra high strength steel sheet of DP980. The forming technology considered in this paper is the draw & form type, which installs the upper pad and lower pad to produce the complicated shape of ultra high strength steel sheet. In order to produce sound product, comparison between form type and draw & form type and between draw type and draw & form type are investigated by FE-analysis. FE-analysis is carried out with commercial sheet metal forming analysis S/W, DYNAFORM. It was shown from FE-analysis that the draw & form type satisfied the required specifications such as the dimensional accuracy and soundness of automotive front side member part. The effectiveness of the analytical result was verified by the experiment. From this investigation, the draw & form type is proved to be able to supply useful forming technology in forming ultra high strength steel.

Simulation and Characteristic Analysis Using ATP Draw for Power System Equipments (ATP Draw를 이용한 전력계통 설비의 모의 및 특성분석)

  • Ha, Cha-Wung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1227-1229
    • /
    • 1999
  • The ATP Draw is a graphical mouse-driven preprocessor to ATP on the Windows Platform. User can build a graphical picture of the electric circuit by selecting components from menus. In this paper, ATP Draw is used to analyze power transformer transient characteristics and lightning overvoltage phenomenon in underground transmission cables. The results obtained by simulations will be used to identify the response of the digital protection algorithms in power system equipment

  • PDF

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions- (폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-)

  • 현은재;이소화;김기영;제갈영순;장상희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.335-343
    • /
    • 2002
  • Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

Effect of Intentional Draw & Fade Shots on Golf Swing Mechanics (의도적인 드로우 샷과 페이드 샷이 골프 스윙 역학에 미치는 영향에 관한 연구)

  • Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 2010
  • Intentional draw and fade shots could be good weapons for lowering golf score. But how to make such shots? To investigate deterministic variables generating different projectile paths of shots in square stance was the purpose of this study. Ten right-handed male collegiate athletes, showing 1.3 of averaged handicap, participated in this study. They were asked to intentionally perform three different shots such as the straight shot(control condition), draw shot, and fade shot. Swing path, pelvis rotation angle, thorax rotation angle and left forearm supination angle were determined for dependent variables on impact event at each trial. For statistical analysis one-way repeated measures ANOVA were used. The results showed that swing path was one of main factor making differences among three kind of shots. Straight shot vs. Draw shot, Straight shot vs. Fade shot and Draw shot vs. Fade shot showed differences on swing path. And left forearm supination angle revealed significant difference between draw shot and fade shot, showing a significant larger angle of draw shot than fade shot. No other significant difference was detected for the other variables. We found that the shot characteristics were influenced primarily by swing path and left forearm supination angle.

Comparison of Bio-ethanol Productivity Using Food Wastes by Various Culture Modes (에탄올 발효방법에 따른 음식물류 폐기물의 바이오에탄올 생산성 비교)

  • Kang, Hee-Jeong;Li, Hong-Xian;Kim, Yong-Jin;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.471-477
    • /
    • 2010
  • In order to improve bio-ethanol productivity by various cultivation methods in this paper, the culture modes using food wastes, such as batch culture, high-cell-density fermentation, SSF (simultaneous saccharification and fermentation) by fill & draw, continuous culture by fill & draw were performed and their productivities were compared. SSFs by fill & draw were performed by continuous decompression using 1 L evaporator system, and by 10 L bioreactor without decompression. In addition, the continuous cultures by fill & draw mode using SFW (saccharafied food wastes) medium were performed by changes of 40% culture broth with intervals of 12 h (0.03 $h^{-1}$), 6 h (0.07 $h^{-1}$), 3 h (0.13 $h^{-1}$). Consequently, productivities of bio-ethanol were 2.52 g/L-h and 1.30 g/L-h in batch culture and high- cell-density fermentation, respectively. The productivities of SSF by fill & draw showed 2.24 g/L-h and 2.03 g/L-h in continuous decompression with 1 L evaporator and 10 L bioreactor without decompression, respectively. Also, the productivities in continuous culture by fill & draw modes showed 2.02 g/L-h, 4.07 g/L-h and 6.25 g/L-h by medium change with intervals of 12 h, 6 h, and 3 h, respectively. In conclusion, the highest ethanol productivity was obtained in the continuous culture mode by fill & draw with dilution rate of 0.13 $h^{-1}$.

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Physical Properties of Nylon Textured Yarn according to False Twist Texturing Parameters (I) - Effect of Speed and Draw Ratio - (가연조건에 따른 나일론 섬유의 물성 (I) - 가연속도와 연신비의 영향 -)

  • Hu, Jong-Tea
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Texturing is the process of including a characteristic of a natural fiber in a synthetic fiber. The most common method of it the false twist texturing. Nylon textured yarn is primarily manufactured by the disk type. The major process parameters or the disk type false twist machine ratio, disk/yarn, and heater temperature. This study therefore investigated the effects of false twist texturing, especially speed and draw ratio, on the physical properties of nylon textured yarn. The increase of speed was proportional to the increase of unwinding tension, which could reduce the production efficiency by elevating the tension affecting to fiber during the process. In addition, the increase of speed was inversely proportional to the increase of crimp rigidity of nylon textured yarn. Draw ratio was proportionally increased with the increase of tenacity and the reductions of fineness and elongation, showing the influence or draw ratio to the ultimate physical properties of textured yarn.