• Title/Summary/Keyword: Drainage Soil

Search Result 848, Processing Time 0.029 seconds

Effects of Ditching on Seedling Stand in Wet Direct Seeding Rice Culture

  • Back, Nam-Hyun;Kang, Si-Yong;Kim, Sang-Su;Kwon, Tae-Oh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.47-52
    • /
    • 2001
  • In order to develop more stable seedling stand method in wet direct rice seeding culture, the effect of making the drainage ditches was studied in both methods of broadcast seeding on floody paddy surface and puddled-soil drill seeding. In a broadcast seeding on floody paddy surface, the ditching after seeding using a tractor or small ditch maker improved the seedling stand, and reduced the floating seedling and herbicide injury by accelerating the drainage. Suitable ditching time was at 2 days after seeding (DAS) for the tractor and at 3 DAS for the ditch maker. In the puddled-soil drill rice seeding culture, the ditching before seeding with a ditch maker at 3 days after draining effectively improved the seedling stand due to quick draining through well formed the seeding furrows. In the puddled-soil drill seeding, seedling stand number showed higher in both ditching plots synchronized with seeding compared with both only draining treatment at 1 DAS without ditching and the flooding plot condition for 6 DAS. And the suitable ditching depth was 6 cm, as considered the ditching status and drained status. These results suggest that the ditching in wet direct rice seeding is an resonable practice for improving the seedling stand through the accelerating drainage of field.

  • PDF

Effect of Drainage Duration before Seeding and Furrow Depth on Seedling Establishment and Growth in Direct Drill Seeding Culture of Rice on Puddled Soil (벼 무논골뿌림 재배에서 파종전 논 굳힘 일수 및 골깊이가 입모 및 생육에 미치는 영향)

  • Kim, Sang-Su;Back, Nam-Hyun;Seok, Soon-Jong;Lee, Seon-Yong;Kim, Jong-Ho;Cho, Dong-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.6
    • /
    • pp.531-536
    • /
    • 1994
  • Drainage duration before seeding and furrow depth desirable for establishment and growth in direct drill seeding of rice on puddled paddy soil were investigated. Furrow depths tested were 2, 4 and 6cm in combination with drainage duration 2, 4, and 6days. Dongjinbyeo was used and seeded on May 11, 1993. Seedling establishment were improved by longer drainage duration and by shallower furrow. Lodging occurred moderately at furrow depth of 2cm with 4 and 6days of surface drainage before seeding. This lodging might be attributable to the shallow burying of shoot below soil surface. Rice yield was highest at furrow depth of 4cm with 4days drainage before seeding. In considering seedling establishment and yield, desirable drainage duration before seeding and furrow depth might be 4days and 4cm, respectively. Cone(115g) penetration depth, dropped at 1m above soil surface, was 6 to 7cm on the date after 4days drainage before seeding.

  • PDF

Changes of soil characteristics, rice growth and lodging traits by different fertilization and drainage system in paddy soil (논 토양에서 배수 및 시비조건에 따른 토양특성, 생육 및 도복 관련 형질의 변화)

  • Jeon, Weon-Tai;Park, Chang-Young;Park, Ki-Do;Cho, Young-Son;Lee, Jeom-Sig;Lee, Dong-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • The installation of subsurface drainage equipment is required for generalized use of paddy field and to improve soil productivity. The internal drainage of paddy field has improved root condition from the increasing of oxygen supply and removing noxious elements. This experiment was carried out to determine the effects of fertilization and drainage system on soil characteristic, growth and lodging trait of rice in paddy soil. A subsurface drainage system was installed a depth of 0.8m. Three fertilizer treatments were applied : 1) Conventional fertilized plot, 2) Controlled-release fertilized plot, 3) No-fertilized plot. In conventional plot, 110 kg N (as urea 46%), 45 kg P (as fused phosphate 20%) and 57 kg K (as potassium chloride 60%) per hectare fertilizers were applied. Controlled-release fertilizer was applied by 70% of N compared to the conventional plot. During the rice cropping, the water depth decrease was two times higher in subsurface drainage(SD) plot than non-drained(ND) plot. After harvesting of rice, the bulk density of sub-soil(10-20cm depth) was lower in SD plot than ND plot. After the experiment, the surface soil pH was high at SD plot but sub-soil was high at ND plot. Organic matter content was higher in all soil layer for SD plot than fro ND plot. Available $P_2O_5$ was not different between SD and ND plot for surface soil, but was high for SD plot for sub soil. The $NH_4{^+}-N$ content of soil, shoot dry matter, total nitrogen and $K_2O$ of rice plant were greater after panicle formation stage in SD plot. Total nitrogen content, $P_2O_5$ and $K_2O$ of rice root were high in SD plot after heading. Though the gravity center and 3rd internode length were greater, pulling force of rice root was higher in SD plot than ND plot. Rice yield in SD plot were low at conventional and controlled-release fertilized plot because of the greater field lodging, but yield in SD plot was high at no-fertilized plot. This study indicates that the fertilization level should be decrease on subsurface drainage system for rice cropping.

Soil Loss Reduction and Stabilization of Arsenic Contaminated Soil in Sloped Farmland using CMDS (Coal Mine Drainage Sludge) under Rainfall Simulation (광산지역 비소오염 경사 농경지 토양의 안정화 및 유실 저감을 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.18-26
    • /
    • 2021
  • Soil aggregation begins with flocculation of clay particles triggered by interfacial reactions of polyvalent cation such as Ca2+ and Fe3+, and they are also known as important elements to control the mobility of arsenic in soil environment. The objective of this study was to investigate the feasibility of CMDS (coal mine drainage sludge) for soil loss reduction and stabilization of arsenic-contaminated soil in a 37% sloped farmland under rainfall simulation. The amount of soil loss decreased by 43% when CMDS was applied, and this result was not significantly different from the case of limestone application, which yielded 46% decrease of soil loss. However, the relative amount of dispersed clay particles in the sediment CMDS-applied soil was 10% lower than that of limestone-applied soil, suggesting CMDS is more effective than limestone in inducing soil aggregation. The concentrations of bioavailable arsenic in CMDS amended soil decreased by 46%~78%, which was lower than the amount in limestone amended soil. Therefore, CMDS can be used as an effective amendment material to reduce soil loss and stabilize arsenic in sloped farmland areas.

Effects of Heavy Rain during Rainy Season and Drainage Methods on Soil Water Content, Photosynthesis Characteristics, and Growth in 'Jinok' and 'Campbell Early' Grapes (장마기 집중호우와 배수방법이 토양수분 및 포도 '진옥'과 '캠벨얼리'의 광합성 특성과 생육에 미치는 영향)

  • Choi, Young Min;Jung, Sung Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, it is increasing the grape farm which is converted from paddy field to orchard. These soil which are poor drainage extremely also can be damaged a lot by excessive water or flooding during heavy rain season on summer. Therefore the aim of this study was carried out to measure the changes of soil water potential and to compare the growth responses of 'Jinok' (Vitis spp.) and 'Campbell Early' (V. labruscana) grapes under three drainage systems (control, conventional drainage, and under drainage). After heavy rain, soil water potential holding times above -15 kpa applied water excessive were 352, 348 and 180 hours in control, conventional, and under drainage systems, respectively. The clay content of the under drainage system was lower than the other systems about 8-12%. The crop water stress index was lowest in the under drainage and highest in the control. Also, photosynthetic rate has showed the opposite result with crop water stress index. It was significant differences between the treatments but, the value has not shown significantly different between the varieties. In addition, leaf area and the trunk growth rate was more effective in under drainage than in the control and conventional drainage.

Effects of Physical Improvement Practices at Plastic Film House Soil (시설재배 토양의 물리성 개선을 위한 처리방법별 효과 비교)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Hyun, Byung-Keun;Park, Woo-Pung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.92-97
    • /
    • 2001
  • Soil characteristics and crop productivity was compared between 5 soil physical treatment plots: check, reversion, subsoiling, explosive subsoiling and drainage in salt accumulated Gangseo Fine sandy loam soil from 1999 to 2000. Physical treatments of subsoil improved soil physical properties in the following order, reversion > drainage > explosive subsoiling > subsoiling > check. The effectiveness of physical treatment was sustained to the 2nd year after treatment. Soil moisture content of subsoil was highest in the reversion treatments and decreased in the order of drainage, subsoiling, and check. However there was little difference between treatments. The physical treatments increased fluctuation of soil moisture content. However the crop yield in the physical treatment plots were increased. It was considered that the increase of crop yield was caused by improvement of soil physical properties rather than soil water holding in the soil. An average increase rate of crop yield by physical treatments was 10 to 20 percent.

  • PDF

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

Influence of Irrigation Times, Soil Treatment and Drainage in Indoor on the Growth Response of Cyrtomium falcatum Ferns Korea Native (실내에서 관수주기, 토양처리, 배수층이 자생 도깨비고비의 생육에 미치는 영향)

  • Ju, Jin Hee;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • It was aimed to promote Cyrtomium falcatum as a material for interior landscape by validating it indoor adaptability in the indoor environment, especially irrigation times, soil treatment and drainage level. Irrigation times were 2 times per week and 7 times per week. Soil treatment and drainage level were carried out drainage-peatmoss : vermiculite : perlite=1 : 1 : 1(D-PVP), peatmoss : vermiculite : perlite=1 : 1 : 1(PVP), drainage-saprolite : leaf mold=1 : 1(D-SL) and saprolite : leaf mold=1 : 1(SL). 1. Top of growth was better with irrigation 7 times per week than irrigation 2 times per week but indoor adaptability was decreased and shown yellowish green. 2. In case of soil treatment, growth was better with saprolite : leaf mold=1 : 1 but indoor growth adaptability was decreased than peatmoss : vermiculite : perlite=1 : 1 : 1. 3. Plant height and blade length were increased under non-drainage treatment but indoor adaptability, number of new fronds and number of sporophyll were decreased under drainage treatment, regardless of irrigation times and soil treatment. 4. Photosynthetic rate(Pn) was the highest in the drainage-peatmoss : vermiculite : perlite=1 : 1 : 1 treatment of irrigation 2 times per week and was the lowest in the saprolite : leaf mold=1 : 1 treatment of irrigation 7 times per week.

A study on vegetation and soil environmental characteristics of green roof in Daejeon Metropolitan City (대전광역시 옥상녹화 지역의 식생현황 및 토양환경 특성에 관한 연구)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Park, Beom-Hwan;Lee, Hang-Goo;Yun, Joon-Young;Jang, Kwan-Woo;Lee, Seung-Woo;Lee, Ho-Young;Kwon, Oh-Jung;Lee, Sook-Mee;Kil, Sung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.641-649
    • /
    • 2011
  • This study was to analyze the soil environmental characteristics and vegetation status of green roof in Daejeon Metropolitan City. The investigated floras of vascular plants are 17 families, 26 genera, 28 species in Seo-Gu Daejeon District Office Building (SG), 25 families, 49 genera, 56 species in Galma Public Library (GP), and 34 families, 57 genera, 60 species in Daejeon City Hall (DC) respectively. Although the larger area shows the more numbers of species in introduced plants and naturalized plant, the naturalized plant ratios were similar with each other. They were 10.71%, 10.71%, and 11.67% at SG, GP, and DC respectively. As a result of analysis on soil physical property, soil depths including vegetation soil and drainage soil of 3 green roofs were 30cm. The depths of vegetation soil at SG, GP, and DC were 0~8cm, 0~10cm, 0~10cm respectively. As a results of soil chemical properties of our study, soil pH of vegetation soil and drainage soil were a range of 6.42 and 7.43, and a range of 6.55 and 7.43 on the average respectively. Available-P contents of vegetation soil and drainage soil were a range of 153.33 and 366.33mg/kg, and a range of 136.67 and 242.67 mg/kg which is very high, respectively. Carbon contents in soil at vegetation soil and drainage soil were a range of 3.16 and 6.38%, and a range of 1.63 and 2.47% respectively. Carbon storage per square meter within 30 cm were 2.76 kg, 2.99 kg, and 3.66 kg at SG, GP, and DC respectively.

A Consideration on the Effect of the Fine Content and Salinity of Soils on the TDR Measurement (토양의 세립분 함량과 염분농도가 TDR 측정값에 미치는 영향 고찰)

  • Yu, Chan;Lee, Geun-Hu
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.246-253
    • /
    • 2006
  • Experimental laboratory tests were carried out to assess the effect of fine content and salinity of soils on the measurement of TDR(Time Domain Reflectometry). In the test, using soil columm which was made by PVC pipe with the dimension of 25cm height and 20cm diameter, the salinity variation of soil was controlled by the solution which was dissolved NaCl to destilled water in the range of 0-40g.$L^-1$. The fine content of soil was controlled by kaolinite which was mixed with Jumunjin sand in the range of 0-50% to the total dry weight. The water contents of soil tested were measured with the conventional oven dry method beside TDR and compared the these values to figure out the extent of effect. As the results of tests, it was appeared that the water content measurement by TDR can be affected by the salinity level, fine contents, and the degree of saturation of the soil.

  • PDF