• Title/Summary/Keyword: Down-regulated

Search Result 1,307, Processing Time 0.038 seconds

Characterization of Protein Function and Differential Protein Expression in Soybean under Soaking Condition (Proteomics를 이용한 콩의 발아 전 침종처리에 따른 단백질 발현 양상 비교 분석)

  • Cho, Seong-Woo;Kim, Tae-Sun;Kwon, Soo-Jeong;Roy, Swapan Kumar;Lee, Chul-Won;Kim, Hong-Sig;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • Soybean is very useful crop to supply vegetable protein for human. However, cultivation arear of this economically important crop is gradually diminished in upland field. Hence, cultivation area of soybean is increased in paddy field. During the growth duration of soybean, excessive moisture injury is serious problem for sustainable production and supply. We investigated protein expression according to different period of seed soaking and germination after seed soaking. For comparison on expression of protein according to different condition, we performed two-dimensional electrophoresis. After electrophoresis analysis, we selected differentially expressed protein spots according to different condition such as soaking period and germination after soaking to identify protein function by using MALDI-TOF. Results revealed that pattern of expression of protein according to soaking period and germination after soaking were generally not different in major spots. However, degree of expression of protein in some protein spots was increased in accordance with decrease of soaking period. Especially, in Hwangkeum-Kong, Danyeop-Kon, and Pecking, the degree of expression of protein was remarkably increased for 4 days after soaking. But, according to germination after soaking, degree of expression of protein in germinated seeds of all cultivars was higher than un-germinated seeds. In results of MALDI-TOF analysis, specific proteins were identified by different soaking period such as Allergen Gly m Bd 28K, P24 oleosin isoform B. Also, in accordance with germination, degree of protein expression of the related protein, Gibberellin was increased in un-germinated seeds of Iksan-Kong. In ungerminated seeds of Sinpaldal-kong, proteins were identified as down-regulated by soaking such as ATP binding and Inhibitor II', proteinase.

A comparison of supplemental calcium soap of palm fatty acids versus tallow in a corn-based finishing diet for feedlot steers

  • Warner, Crystal M.;Hahm, Sahng-Wook;Archibeque, Shawn L.;Wagner, John J.;Engle, Terry E.;Roman-Muniz, Ivette N.;Woerner, Dale;Sponsler, Mark;Han, Hyungchul
    • Journal of Animal Science and Technology
    • /
    • v.57 no.6
    • /
    • pp.25.1-25.7
    • /
    • 2015
  • Rumen bypass fat is commonly added to increase energy intake in dairy cattle. The objective of this study is to examine the addition of rumen bypass fat during finishing period on performance and carcass characteristics in grain fed steers. This study was conducted as a completely randomized block design with 126 cross-bred steer calves (initial BW $471.5{\pm}7.5kg$) randomly assigned to pens with 9 steers/pen (n = 7 pens/treatment). Each pen was randomly assigned to one of two treatment groups; rumen bypass fat treatment (CCS, calcium soap of palm fatty acids) and control diet (CT, tallow). The diets were formulated to be isonitrogenous and isocaloric. Animals were fed twice daily at 110 % of the previous daily ad libitum intake. Blood from each sample was taken from the jugular vein. Muscle and adipose samples were collected from the longissimus dorsi regions. Feedlot performance and carcass characteristics were assessed. To examine adipogenic gene expression, quantitative real-time PCR was completed. Steers fed the CT had a greater level of performance for most of the parameters measured. The CT group had greater DMI (P < 0.05) and tended to have greater ADG (P < 0.10). Marbling score (P < 0.05) and quality grade (P < 0.05) were greater for steers fed the CT diet than those fed CCS. The longissimus muscle area tended to be greater (P < 0.10) in steers fed CT ($87.60cm^2$) than those fed CCS (84.88 cm2). The leptin mRNA expression was down-regulated (P < 0.05) in adipose tissue of steers fed a CCS when compared to those fed CT. These data suggest that calcium soap of palm fatty acids can be added to finishing diets without significant reduction in final body weight, although there may be modest reductions in marbling and quality scores.

Impact on Inflammation and Recovery of Skin Barrier by Nordihydroguaiaretic Acid as a Protease-Activated Receptor 2 Antagonist

  • Kim, Hyo-Young;Goo, Jung-Hyun;Joo, Yeon-Ah;Lee, Ha-Yoen;Lee, Se-Mi;Oh, Chang-Taek;Ahn, Soo-Mi;Kim, Nam-Hoon;Hwang, Jae-Sung
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.463-469
    • /
    • 2012
  • Atopic dermatitis is a chronic, inflammatory disease of the skin with increased transepidermal water loss. Both an abnormal inflammatory response and a defective skin barrier are known to be involved in the pathogenesis of atopic dermatitis. Protease activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is activated by both trypsin and a specific agonist peptide, SLIGKV-$NH_2$. PAR2 is expressed in suprabasal layers of the epidermis and regulates inflammatory responses and barrier homeostasis. In this study, we show that nordihydroguaiaretic acid (NDGA) inhibits the PAR2-mediated signal pathway and plays a role in skin barrier recovery in atopic dermatitis. Specifically, NDGA reduces the mobilization of intracellular $Ca^{2+}$ in HaCaT keratinocytes by down-regulating inflammatory mediators, such as interleukin-8, thymus and activation-regulated chemokine and intercellular cell adhesion molecule-1 in HaCaT keratinocytes. Also, NDGA decreases the protein expression of involucrin, a differentiation maker of keratinocyte, in both HaCaT keratinocytes and normal human epidermal keratinocytes. We examined NDGA-recovered skin barrier in atopic dermatitis by using an oxazolone-induced atopic dermatitis model in hairless mice. Topical application of NDGA produced an increase in transepidermal water loss recovery and a decrease in serum IgE level, without weight loss. Accordingly, we suggest that NDGA acts as a PAR2 antagonist and may be a possible therapeutic agent for atopic dermatitis.

Regulation of Arabidopsis Circadian Clock by De-Etiolated 1 (DET1) Possibly via Histone 3 Acetylation (H3Ac) (히스톤 3 아세틸화(H3Ac)를 통한 De-Etiolated 1 (DET1)의 애기장대 생체시계 조절)

  • Song, Hae-Ryong
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.999-1008
    • /
    • 2012
  • The circadian clock is a self-sustaining 24-hour timekeeper that allows organisms to anticipate daily-changing environmental time cues. Circadian clock genes are regulated by a transcriptional-translational feedback loop. In Arabidopsis, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) transcripts are highly expressed in the morning. Translated LHY and CCA1 proteins repress the expression of the TIMING OF CAB EXPRESSION 1 (TOC1) transcripts, which peaks in the evening. The TOC1 protein elevates the expression of the LHY and CCA1 transcripts, forming a negative feedback loop that is believed to constitute the oscillatory mechanism of the clock. In mammals, the transcription factor protein CLOCK, which is a central component of the circadian clock, was reported to have an intrinsic histone acetyltransferase (HAT) activity, suggesting that histone acetylation is important for core clock mechanisms. However, little is known about the components necessary for the histone acetylation of the Arabidopsis clock-related genes. Here, I report that DET1 (De-Etiolated1) functions as a negative regulator of a key component of the Arabidopsis circadian clock gene LHY in constant dark phases (DD) and is required for the down-regulation of LHY expression through the acetylation of histone 3 (H3Ac). However, the HATs directly responsible for the acetylation of H3 within LHY chromatin need to be identified, and a link connecting the HATs and DET1 protein is still absent.

TALEN Constructs and Validation for Targeting of SETDB1 Genomic DNA (SETDB1 genomic DNA 를 표적하는 TALEN construct 제작 및 분석)

  • Noh, Hee-Jung;Kang, Yoonsung;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1269-1275
    • /
    • 2014
  • TALEN is a newly developed gene engineering method to knock out specific genes. It contains a DNA binding domain and a Fok1 nuclease domain in the TALEN plasmid. Therefore, the engineered TALEN construct can bind to any region of genomic DNA and cut the target nucleotide, thereby inducing mutation. In this study, we constructed two TALEN constructs targeted to a protein initiation codon (DBEX2) or the 25th upstream region (DBPR25) to enable mRNA synthesis of SETDB1 HMTase. We performed the TALEN cloning in two steps. The first step was from module vectors to pFUS array vectors. We confirmed successful cloning with a colony PCR experiment and Esp31 restriction enzyme digestion, which resulted in a smear band and a 1 Kb insert band, respectively The second step of the cloning was from a pFUS array vector to a mammalian TALEN expression vector. The engineered TALEN construct was sequenced with specific primers in an expression vector. As expected, a specific array from the module vectors was shown in the sequencing analysis. The specific module sequences were regularly arrayed in every 100 bp, and SETDB1 expression totally disappeared in the TALEN-DBEX2 transfection. PCR amplification targeting of DBEX2 was performed, and the PCR product was digested with a T7E1 restriction enzyme. The expression of SETDB1 was down-regulated in the TALEN-DBPR25 transfection. Morphological changes were also observed in the two TALEN constructs with transfected HeLa cells. These results suggest that the engineered TALEN constructs in two strategic approaches are very useful to knock-out of the SETDB1 gene and to study gene function.

Viral Hemorrhagic Septicemia Virus NV Gene Decreases Glycolytic Enzyme Gene Transcription (바이러스성 출혈성 패혈증 바이러스 NV 단백질에 의한 glucokinase 전사 활성의 억제)

  • Cho, Mi Young;Hwang, Jee Youn;Ji, Bo Young;Park, Myoung Ae;Seong, Mi So;Kim, So Young;Jung, Ye Eun;Cheong, Jae Hun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1470-1476
    • /
    • 2016
  • The viral hemorrhagic septicemia virus (VHSV), which belongs to the Novirhabdovirus genus of the Rhabdoviridae family, is a viral pathogen that causes severe losses in the olive flounder farming industry. Among six encoding VHSV proteins, the non-virion (NV) protein has been shown to have an impact on virulence. In our previous studies, transcriptomics microarray analysis by using VHSV-infected olive flounder showed that VHSV infection significantly down-regulated the mRNA expression of glycolytic enzymes. In addition, VHSV NV protein variants decreased the intracellular ATP level. Based on these results, we have tried to examine the effect of VHSV NV protein on glycolytic enzyme glucokinase expression, which phosphorylates glucose to glucose 6-phosphate. Our results indicated that the NV protein significantly decreased the mRNA expression of glucokinase in olive flounder HINAE cells. Furthermore, the NV protein played a negative role in the promoter activation of glucokinase. Furthermore, glucose uptake was effectively inhibited by VHSV infection and NV protein expression in olive flounder HINAE cells. These results suggest that the VHSV NV protein negatively regulates glycolytic enzyme expression by a transcription level and eventually leads to gradual morbidity of olive flounder through cellular energy deprivation. The present results may be useful for the prevention and diagnosis of VHSV infection in olive flounder.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

Effects of Estradiol-$17{\beta}$ and Nonylphenol on mRNA Expression of Estrogen Receptor-related Receptor $\beta$ Like 1 and Early Embryogensis in Sea Urchin, Strongylocentrotus nudus (Estradiol-$17{\beta}$와 Nonylphenol이 둥근성게(Strongylocentrotus nudus) 초기 배발생과 Estrogen Receptor-related Receptor $\beta$ Like 1 mRNA 발현에 미치는 영향)

  • Jung, Yu-Jung;Maeng, Se-Joeng;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • The estrogens and estrogenic endocrine disrupting chemicals(EDCs) function through a steroid nuclear receptor-mediated process and subsequently regulate the transcription of mRNA for a number of target proteins. The estrogen receptor-related receptors(ERRs), which are structurally similar to estrogen receptors, are members of orphan nuclear receptor in the nuclear receptor superfamily and their functions are known to be involved in the formation of extra-embryonic ectoderm. To investigate effects of EDCs on early embryogenesis and ERR gene expression in marine invertebrates, we examined morphological changes and the mRNA expression of $ERR{\beta}$ like 1 in sea urchin Strongylocentrotus nudus exposed to estradiol-$17{\beta}(E_2)$ or nonylphenol(NP). The $E_2$ and NP-exposed embryos showed a delayed development compared to control embryos. Furthermore, they showed abnormal embryonic developments at late stages, i.e., blastular, gastrula and plutei stages. The mRNA level of $ERR{\beta}$ like 1 at the gastrula stage was significantly lower in $E_2$ and NP-exposed embryos than those of control group. These results suggest that NP and $E_2$ are potent chemicals causing abnormal embryonic development of S. nudus through at least in part down-regulated $ERR{\beta}$ like 1.

  • PDF

Growth Inhibition of Human Hepatoma and Bladder Carcinoma Cells by DNA Topoisomerae Inhibitor β-lapachone (DNA topoisomerase 억제제인 β-lapachone에 의한 인체 간암 및 방광암세포 증식억제에 관한 연구)

  • Choi Da Yean;Lee Jae Il;Chung Hyun Sup;Seo Han Gyeol;Woo Hyun Joo;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.323-331
    • /
    • 2005
  • The objective of the present study was to investigate the effect of $\beta-lapachone$, a quinone obtained from the bark of the lapacho tree (Tabebuia avellanedae) in South America, on the cell growth of human hepatoma (HepG2) and bladder (T24) carcinoma cells. Exposure of cancer cells to $\beta-lapachone$ resulted in growth inhibition, morphological changes and apoptosis in a concentration-dependent manner, which could be proved by MTT assay and flow cytometry analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that $\beta-lapachone$ did not affect the levels of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAFl/CIPl) expression. However, the transcriptional factor Sp-l and proliferating cell nuclear antigen (PCNA) protein levels were significantly down-regulated by $\beta-lapachone$ in both cell lines. Moreover, $\beta-lapachone$ treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-l (TEP-l). Taken together, these findings suggest that $\beta-lapachone$-induced inhibition of human hepatoma and bladder carcinoma cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and provide important new insights into the additional mechanisms of the anti-cancer activity of $\beta-lapachone$.

Identification of proteins involved in the pancreatic exocrine by exogenous ghrelin administration in Sprague-Dawley rats

  • Lee, Kyung-Hoon;Wang, Tao;Jin, Yong-Cheng;Lee, Sang-Bum;Oh, Jin-Ju;Hwang, Jin-Hee;Lim, Ji-Na;Lee, Jae-Sung;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.56 no.2
    • /
    • pp.6.1-6.4
    • /
    • 2014
  • The aims of study were to investigate the effects of intraperitoneal (i.p.) infusion of ghrelin on pancreatic ${\alpha}$-amylase outputs and the responses of pancreatic proteins to ghrelin that may relate to the pancreatic exocrine. Six male Sprague-Dawley rats (300 g) were randomly divided into two groups, a control group (C, n = 3) and a treatment group (T, $10.0{\mu}g/kg$ BW, n = 3). Blood samples were collected from rat caudal vein once time after one hour injection. The concentrations of plasma ghrelin, cholecystokinin (CCK) and alfa-amylase activity were evaluated by enzyme immunoassay (EIA) kit. Two-dimensional gel electrophoresis (2-DE) analysis was conducted to separate the proteins in pancreas tissue. Results showed that the i.p. infusion of ghrelin at doses of $10.0{\mu}g/kg$ body weight (BW) increased the plasma ghrelin concentrations (p = 0.07) and elevated the plasma CCK level significantly (p < 0.05). Although there was no statistically significant, the ${\alpha}$-amylase activity tended to increase. The proteomics analysis indicated that some pancreatic proteins with various functions were up- or down-regulated compared with control group. In conclusion, ghrelin may have role in the pancreatic exocrine, but the signaling pathway was still not clear. Therefore, much more functional studies focus on these found proteins are needed in the near future.