Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.8.999

Regulation of Arabidopsis Circadian Clock by De-Etiolated 1 (DET1) Possibly via Histone 3 Acetylation (H3Ac)  

Song, Hae-Ryong (Biosafety Research Team, National Institute of Environmental Research (NIER))
Publication Information
Journal of Life Science / v.22, no.8, 2012 , pp. 999-1008 More about this Journal
Abstract
The circadian clock is a self-sustaining 24-hour timekeeper that allows organisms to anticipate daily-changing environmental time cues. Circadian clock genes are regulated by a transcriptional-translational feedback loop. In Arabidopsis, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) transcripts are highly expressed in the morning. Translated LHY and CCA1 proteins repress the expression of the TIMING OF CAB EXPRESSION 1 (TOC1) transcripts, which peaks in the evening. The TOC1 protein elevates the expression of the LHY and CCA1 transcripts, forming a negative feedback loop that is believed to constitute the oscillatory mechanism of the clock. In mammals, the transcription factor protein CLOCK, which is a central component of the circadian clock, was reported to have an intrinsic histone acetyltransferase (HAT) activity, suggesting that histone acetylation is important for core clock mechanisms. However, little is known about the components necessary for the histone acetylation of the Arabidopsis clock-related genes. Here, I report that DET1 (De-Etiolated1) functions as a negative regulator of a key component of the Arabidopsis circadian clock gene LHY in constant dark phases (DD) and is required for the down-regulation of LHY expression through the acetylation of histone 3 (H3Ac). However, the HATs directly responsible for the acetylation of H3 within LHY chromatin need to be identified, and a link connecting the HATs and DET1 protein is still absent.
Keywords
Arabidopsis; circadian clock; De-Etiolated1 (DET1); histone acetylations; Late Elongated Hypocotyl (LHY);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Harmer, S. L. 2009. The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357-377.   DOI
2 Alabadí, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Más, P. and Kay, S. A. 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883.   DOI   ScienceOn
3 Belden, W. J., Loros, J. J. and Dunlap, J. C. 2007. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25, 587-600.   DOI
4 Benvenuto, G., Formiggini, F., Laflamme, P., Malakhov, M. and Bowler, C. 2002. The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr. Biol. 12, 1529-1534.   DOI
5 Berloco, M., Fanti, L., Breiling, A., Orlando, V. and Pimpinelli, V. 2001. The maternal effect gene, abnormal oocyte (abo), of Drosophila melanogaster encodes a specific negative regulator of histones. Proc. Natl. Acad. Sci. USA 98, 12126-12131.   DOI
6 Brown, S. A., Ripperger, J., Kadener, S., Fleury-Olela, F., Vilbois, F., Rosbash, M. and Schibler, U. 2005. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696.   DOI
7 Castells, E., Molinier, J., Benvenuto, G., Bourbousse, C., Zabulon, G., Zalc, A., Cazzaniga, S., Genschik, P., Barneche, F. and Bowler, C. 2011. The conserved factor DEETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J. 30, 1162-1172.   DOI
8 Chen, H., Shen, Y., Tang, X., Yu, L., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N. and Deng, X. W. 2006. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18, 1991-2004.   DOI
9 Chen, Z. J. and Tian, L. 2007. Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta. 1769, 295-307.   DOI
10 Chory, J., Peto, C., Feinbaum, R., Pratt, L. and Ausubel, F. 1989. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58, 991-999.   DOI
11 Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A. and Harmer, S. L. 2008. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130.   DOI   ScienceOn
12 Dodd, A. N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., Hibberd, J. M., Millar, A. J. and Webb, A. A. 2005. Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309, 630-633.   DOI   ScienceOn
13 Doi, M., Hirayama, J. and Sassone-Corsi, P. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508.   DOI
14 Dowson-Day, M. J. and Millar, A. J. 1999. Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63-71.   DOI   ScienceOn
15 Han, S. K., Song, J. D., Noh, Y. S. and B. Noh, B. 2007. Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J. 49, 103-114.
16 Dunlap, J. C. 1990. Closely watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophila. Trends Genet. 6, 159-165.   DOI
17 Etchegaray, J. P., Lee, C., Wade, P. A. and Reppert, S. M. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177-182.   DOI
18 Etchegaray, J. P., Yang, X., DeBruyne, J. P., Peters, A. H., Weaver, D. R., Jenuwein, T. and Reppert, S. M. 2006. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209-21215.   DOI   ScienceOn
19 Hirayama, J., Sahar, S., Grimaldi, B., Tamaru, T., Takamatsu, K., Nakahata, Y. and Sassone-Corsi, P. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090.   DOI
20 Hollender, C. and Liu, Z. 2008. Histone deacetylase genes in Arabidopsis development. Integr. Plant Biol. 50, 875-885.   DOI
21 Imaizumi, T. and Kay, S. A. 2006. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550-558.   DOI   ScienceOn
22 Lau, O. S., Huang, X., Charron, J. B., Lee, J. H., Li, G. and Deng, X. W. 2011. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol. Cell. 43, 703-712.   DOI
23 Locke, J. C., Kozma-Bognar, L., Gould, P. D., Feher, B., Kevei, E., Nagy, F., Turner, M. S., Hall, A. and Millar, A. J. 2006. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol. 2, 59.
24 Moore, R. Y. 1997. Circadian rhythms: basic neurobiology and clinical applications. Annu. Rev. Med. 48, 253-266.   DOI
25 McClung, C. R. and Gutiérrez, R. A. 2010. Network news: prime time for systems biology of the plant circadian clock. Curr. Opin. Genet. Dev. 20, 588-598.   DOI
26 Millar, A. J., Short, S. R., Hiratsuka, K., Chua, N. -H. and Kay, S. A. 1992. Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol. Biol. Rep. 10, 324-337.   DOI
27 Millar, A. J., Straume, M., Chory, J., Chua, N. H. and Kay, S. A. 1995. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163-1166.   DOI
28 Naruse, Y., Oh-hashi, K., Iijima, N., Naruse, M., Yoshioka, H. and Tanaka, M. 2004. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278-6287.   DOI
29 Niwa, Y., Ito, S., Nakamichi, N., Mizoguchi, T., Niinuma, K., Yamashino, T. and Mizuno, T. 2007. Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol. 48, 925-937.   DOI
30 Pepper, A., Delaney, T., Washburn, T., Poole, D. and Chory, J. 1994. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78, 109-116.   DOI
31 Perales, M. and Más, P. 2007. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111-2123.   DOI   ScienceOn
32 Roden, L. C., Song, H.-R., Jackson, S., Morris, K. and Carré, I. A. 2002 Floral responses to photoperiod are correlated with the timing of rhythmmic gene expression relative to dawn and dusk, in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 13313-13318.   DOI
33 Pick, E., Lau, O. S., Tsuge, T., Menon, S., Tong, Y., Dohmae, N., Plafker, S. M., Deng, X. W. and Wei, N. 2007. Mammalian DET1 regulates Cul4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes. Mol. Cell. Biol. 27, 4708-4719.   DOI
34 Pruneda-Paz, J. L., Breton, G., Para, A. and Kay, S. A. 2009. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481-1485.   DOI
35 Ripperger, J. A. and Schibler, U. 2006. Rhythmic CLOCKBMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374.   DOI
36 Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I. A. and Coupland, G. 1998. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219-1229.   DOI
37 Schroeder, D. F., Gahrtz, M., Maxwell, B. B., Cook, R. K., Kan, J. M., Alonso, J. M., Ecker, J. R. and Chory, J. 2002. De-etiolated 1 (DET1) and Damaged DNA Binding Protein 1 (DDB1) interact to regulate Arabidopsis photomorphogenesis. Curr. Biol. 12, 1462-1472.   DOI
38 Song, H.-R. and Noh, Y.-S. 2007. Plants measure the time. J. Plant Biol. 50, 257-265.   DOI
39 Wang, Z.-Y. and Tobin, E. M. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217.   DOI   ScienceOn
40 Wenden, B., Kozma-Bognar, L., Edwards, K. D., Hall, A. J., Locke, J. C. and Millar, A. J. 2011. Light inputs shape the Arabidopsis circadian system. Plant J. 66, 480-491.   DOI
41 Yamashino, T., Ito, S., Niwa, Y., Kunihiro, A., Nakamichi, N. and Mizuno, T. 2008. Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence of environmental time cues. Plant Cell Physiol. 49, 1839-1850.   DOI
42 Yanagawa, Y., Sullivan, J. A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S., Wang, J. and Deng, X. W. 2004. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev. 18, 2172-2181.   DOI
43 Yerushalmi, S., Yakir, E. and Green, R. M. 2011. Circadian clocks and adaptation in Arabidopsis. Mol. Ecol. 20, 1155-1165.   DOI
44 Zhang, E. E. and Kay, S. A. 2010. Clocks not winding down: unraveling circadian networks. Nat. Rev. Mol. Cell Biol. 11, 764-776.   DOI