• Title/Summary/Keyword: Doubly-fed induction generator

Search Result 151, Processing Time 0.034 seconds

A Power Analysis for DFIG According to Rotor Excitation (이중여자 유도발전기의 회전자 여자에 따른 출력해석)

  • 김철호;서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.299-306
    • /
    • 2003
  • Doubly-Fed Induction Generator(DFIG) is adequate to maximize the energy capture from wind energy, whereby the turbine speed can be adjusted to a speed, at which a rated tip speed ratio be kept. In this paper, a power analysis for DFIG and its characteristics of power flow in grid-connected operation, are dealt with in speed range of super- and sub-synchronous region. In a test of the machine, whereby a doubly excited circuit configuration in stator as well as rotor with back to back PWM inverter have been equipped, a constant input torque is given and in that condition, power new in stator and rotor circuit have been measured and compared with theoretical value. Furthermore, the power factor in stator and rotor circuit have been examined.

Study on Doubly Fed Induction Generator in a wind turbine (DFIG 풍력발전시스템에 관한 연구)

  • Han, Sang-Yul;Cha, Sam-Gon;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.253-256
    • /
    • 2006
  • This paper shows operating characteristics of DFIG(Double Fed Induction Generator) for wind turbine. The back to back PWM voltage-fed inverter connected between the rotor and grid network operated sub and super-synchronous operating mode, and the vector-controlled DFIG enables the decoupling between active and reactive power as well as between torque and power factor. This paper is validated by simulations and experimental results.

  • PDF

Protection for DFIG using the d-q Equivalent Circuit (d-q 등가회로를 이용한 이중여자 유도발전기 보호)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun;Park, Goon-Cherl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2173-2178
    • /
    • 2008
  • A doubly-fed induction generator(DFIG) system has been widely used in the modem wind turbines due to variable-speed operation, high efficiency and small converter size. It is well known that an inter-turn fault of a generator is very difficult to be detected. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper proposes a protection algorithm for a DFIG using the d-q equivalent circuit in the time domain. In the case of a DFIG, the voltages and currents of the rotor side as well as the voltages and currents of the stator are available. The proposed algorithm estimates the instantaneous(i.e., converted into the stationary frame) induced voltages from the rotor and the stator sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects the inter-turn fault. The algorithm can detect a inter-turn fault of a winding. The performance of the proposed algorithm is validated using a PSCAD/EMTDC simulator under inter-turn fault conditions and normal operating conditions such as an external fault and the change of the wind speed.

Sliding-Mode Based Direct Power Control of a Doubly Fed Induction Generator for Wind Turbines (슬라이딩 모드 기반의 이중여자 유도형 풍력발전시스템의 직접전력제어기법)

  • Kim, Won-Sang;Sim, Gyung-Hun;Lee, Kyo-Beum;Jeong, Byoung-Chang;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.152-162
    • /
    • 2008
  • This paper presents a sliding mode controller (SMC) to directly control the active and reactive powers of a doubly ffd induction generator (DFIG) for wind turbines. Sliding-mode control (SMC) and space-vector modulation (SVM) are combined to ensure high-performance operation. SMC scheme is designed to provide robust and fast power controls without frame transformation and current controller used in the conventional FOC drive. Simulation results and experimental results demonstrate that proposed methods preserve the effectiveness and robustness during variations of active and reactive power.

Multi-objective Fuzzy-optimization of Crowbar Resistances for the Low-Voltage Ride-through of Doubly Fed Induction Wind Turbine Generation Systems

  • Zhang, Wenjuan;Ma, Haomiao;Zhang, Junli;Chen, Lingling;Qu, Yang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1119-1130
    • /
    • 2015
  • This study investigates the multi-objective fuzzy optimization of crowbar resistance for the doubly fed induction generator (DFIG) low-voltage ride-through (LVRT). By integrating the crowbar resistance of the crowbar circuit as a decision variable, a multi-objective model for crowbar resistance value optimization has been established to minimize rotor overcurrent and to simultaneously reduce the DFIG reactive power absorbed from the grid during the process of LVRT. A multi-objective genetic algorithm (MOGA) is applied to solve this optimization problem. In the proposed GA, the value of the crowbar resistance is represented by floating-point numbers in the GA population. The MOGA emphasizes the non-dominated solutions and simultaneously maintains diversity in the non-dominated solutions. A fuzzy-set-theory-based is employed to obtain the best solution. The proposed approach has been evaluated on a 3 MW DFIG LVRT. Simulation results show the effectiveness of the proposed approach for solving the crowbar resistance multi-objective optimization problem in the DFIG LVRT.

A Study on Constant Power Control of Doubly-fed Induction Generator for Wind Turbines (풍력발전을 위한 권선형 유도발전기의 정출력 제어에 관한 연구)

  • Kim, Rae-Young;Suh, In-Young;Song, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1312-1314
    • /
    • 2001
  • This paper presents a constant power controller for doubly-fed. Induction generators used in wind turbines. When the stator side of the generator is connected to the grid, the generated power depends on the rotor current. To control the rotor current based on it's average value, a cost effective SPC (Slip Power Controller) was developed and is ready for testing with an actual 660KW generator system. Experiment results are presented and discussed.

  • PDF

An Improved Control Method for a DFIG in a Wind Turbine under an Unbalanced Grid Voltage Condition

  • Lee, Sol-Bin;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.614-622
    • /
    • 2010
  • This paper presents a control method, which reduces the pulsating torque and DC voltage problems of a doubly fed induction generator (DFIG)-based wind turbine system. To reduce the torque and power ripple, a current control scheme consisting of a proportional integral (PI) controller is presented in a positive synchronously rotating reference frame, which is capable of providing precise current control for a rotor-side converter with separated positive and negative components. The power theory can reduce the oscillation of the DC-link voltage in the grid-side converter. In this paper, the generator model is examined, and simulation results are obtained with a 3 kW DFIG-based wind turbine system to verify the proposed control strategy.

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

Controlling Zero Sequence Component in DVR for Compensating Unbalanced Voltage Dip of a DFIG

  • Ko, JiHan;Thinh, Quach Ngoc;Kim, SeongHuyn;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.154-155
    • /
    • 2012
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generator based on doubly-fed induction generator (DFIG) operated under the unbalanced voltage dip conditions. The compensating voltages of DVR depend on the voltage dips and on the influence of the zero sequence components. If the $Y_0/{\Delta}$ step-up transformers are used, there are no zero sequence components on the DFIG side. However, if the $Y_0/Y_0$ step-up transformers are used, the zero sequence components will appear during faults. The zero sequence components result in the high insulation costs and the asymmetric of the terminal voltages. This paper proposes a method for controlling zero sequence components in DVR to protect DFIG under unbalanced voltage dips. Simulation results are presented to verify the effectiveness of the proposed control method.

  • PDF

A constant power and optimal power factor drive of doubly fed induction generator (이중여자 유도발전기의 정출력.최적역률 운전)

  • 이우석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.31-38
    • /
    • 2000
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFIG) has good adaptivity for that purpose. This paper deals with the speed, power, and power factor control using the Grid connected DFIG in the super-synchronous speed regions, by controlling frequency and voltage fed to the rotor. Power flow of the DFIG and steady-state algebraic equations of the equivalent circuit are analyzed. The wind turbine speed and constant stator power were controlled by the rotor exciting frequency. For a normal operating region, in which the generator ratings were not exceeded, rotor exciting frequency. For a normal operating region, in which the generator ratings were not exceeded, the rotor current was either less than or equal to the rated value. Accordingly, the optimal power factor can be selected relative to the permissible rated current at the rotor coil which controls the magnitude of the injected rotor voltage to the rotor according to a given rotor frequency. Consequently, it is possible to determine the optimal drive of a DFIG for wind power generation application.

  • PDF