• Title/Summary/Keyword: Doublet

Search Result 214, Processing Time 0.03 seconds

Dynamic Resonance Fluorescence in a Colored Vacuum (단일 모드 공진기에서의 동역학 공명형광)

  • Hyoncheol Nha;Chough, Young-Tak;Wonho Jhe;Kyoungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.126-127
    • /
    • 2000
  • Resonance fluorescence is the manifestation of the interaction between the physical system under consideration and the vacuum-field fluctuation. The fluorescence spectrum provides such physical informations as the energy-level structure of the system, instabilities and relative populations of the energy levels, etc.. One of the typical fluorescence spectra is the Mollow triplet appearing when two-level atoms are driven by a strong coherent field in free space$^{(1)}$ . In the weak field limit, the singlet instead of the triplet is obtained with a reduced linewidth due to the squeezing of one quadrature phase of the induced atomic dipole$^{(2)}$ . On the other hand, when the atoms are put inside a cavity rather than in free space, a doublet spectrum due to the vacuum Rabi-splitting is achieved, showing clearly the coupling of atoms and the cavity in the single-quantum limit$^{(3)}$ . (omitted)

  • PDF

Double Resonance Spectra Involving Torsional Excited Levels and CO Stretch Band Transitions of $CD_3OH$

  • Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.165-171
    • /
    • 1995
  • Infrared-Radio frequency double resonance (IRRFDR) and Infrared-Microwave double resonance (IRMWDR) spectroscopy have been used to probe a level of A symmetry for $CD_{3}$OH. Double resonance spectra of $CD_{3}$OH have been investigated over the range of 940 to 1020 $cm ^{-1}$ . Twenty K-type doublet transitions have been observed in both the radio frequency region, which covers 50 MHz to 1 GHz, and the microwave region, which covers 8 GHz to 12 GHz. The results propose new assignments of infrared (IR) absorption transitions and far-infrared (FIR) laser emission lines. These involve torsional excited levels and CO stretch states. Measurements of the A state splitting have permitted the determination of the asymmetry splitting parameters $S^{o}$(n, K) and $^{co}$ (n, K) for (n, K)=(0.3) and (1.3)

  • PDF

Micro-Brillouin Spectroscopy Applied to the Glass Transition of Anti-inflammatory Egonol

  • Kim, Tae-Hyun;Ko, Jae-Hyeon;Kwon, Eun-Mi;Jun, Jong-Gab
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.403-408
    • /
    • 2010
  • The acoustic properties of anti-inflammatory egonol were investigated by using micro-Brillouin scattering spectroscopy, by use of a 6-pass tandem Fabry-Perot interferometer and an optical microscope specially modified for spectroscopic purposes. The measured Brillouin spectrum was composed of a central peak centered at zero and a Brillouin doublet arising from the longitudinal acoustic waves, i.e. propagating density fluctuations. For the first time, the glass transition of egonol was identified to be about $5^{\circ}C$ at which the Brillouin peak position and the half width showed abrupt changes. The substantial damping of acoustic phonons of egonol near the glass transition temperature indicated that the contribution of internal relaxation processes such as small-amplitude librations of side chains to the damping of acoustic phonons may be substantial depending on the internal structure of molecules.

Flutter Characteristics of Double-Swept Composite Wings (이중 후퇴각을 갖는 복합재 날개의 플러터 특성)

  • Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF

Design of a PIV objective maximizing the image signal-to-noise ratio

  • Chetelat Olivier;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.123-137
    • /
    • 2001
  • PIV (particle image velocimetry) systems use a camera to take snapshots of particles carried by a fluid at some precise instants. Signal processing methods are then used to compute the flow velocity field. In this paper, the design of the camera objective (optics) is addressed. The optimization is done in order to maximize the signal-to-noise ratio of in-focus particles. Four different kinds of noise are considered: photon shot noise, thermal and read noise, background glow shot noise, and noise made by the other particles. A semi-empirical model for the lens aberrations of a two-doublet objective is first addressed, since further, it is shown that lens aberrations (low f-value $f_{\#}$) should be used instead of the Fraunhofer diffraction (high f-value) for the fitting of the particle image size with the pixel size. Other important conclusions of the paper include the expression of optimum values for the magnification M, for the exposure period $\tau$ and for the pixel size $\xi$.

  • PDF

Forced Vibration of a Circular Ring with Harmonic Force (조화력에 의한 원환의 강제진동)

  • Hong, Jin-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.123-128
    • /
    • 2005
  • Forced vibration of a thin circular ring with a concentrated harmonic force is analyzed when the ring is free and has only the in-plane motion. Using the unit doublet function for external force, the governing equation is obtained and is solved by the use of Laplace transform. The exact solutions of displacement components and bending moment are obtained. In order to verify the solutions of analysis, finite element analysis is performed and the results shows good agreement. Then, frequency response curves for displacement and bending moment are obtained. In deriving the governing equations and the solutions, nondimensional parameter of the exciting frequency and the magnitude of exciting force are extracted. As the displacement components are obtained, the remaining bending strain, slope, curvature, shear force, etc. can also be derived. With the results of this work, the responses of a free ring excited on multiple points with different frequencies can also be obtained easily by superposition.

Subsonic Flutter Characteristics of a Sandwich Structure Wing with Honeycomb core (하니콤 코어 샌드위치 구조 날개의 아음속 플러터 특성)

  • Kim, Yu-Sung;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.17-26
    • /
    • 2006
  • The flutter characteristics of all movable tail wing with honeycomb sandwich structure have been studied in this study. The present wing model has a airfoil cross section and the linear variation of spanwise thickness. Structural vibration analysis is performed based on the finite element method using sandwich and beam elements. Unsteady aerodynamic technique used on the doublet lattice method has been effectively used to conduct the frequency-domain flutter analyses. The parametric flutter studies have been performed for various structural design parameters. Computational results on flutter stability due to the variation of structural parameters are presented and its related characteristics are investigated through the comparison of results.

  • PDF

Design of a Catadioptric System with Corrected Color Aberration and Flat Petzval Curvature Using a Graphically Symmetric Method

  • Lim, Tae-Yeon;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.324-331
    • /
    • 2018
  • This paper describes a symmetric method for determining a combination of element power and optical material to design a catadioptric system with corrected color aberration and flat Petzval curvature. To graphically obtain the solutions, a glass chart containing the Abbe number, the refractive index, and the optical power, which are closely related to these aberrations, is suggested. First, we recompose an optical system as a doublet of the specific lens and an equivalent single lens, and then locate both lenses on lines that are symmetric to each other on a glass chart, through changing the lens parameters effectively. Utilizing this method, an achromatic catadioptric system with flat Petzval curvature is obtained.

An Experimental study on the drop size and velocity characteristic of drop by impinging jets (충돌분류에 의한 액적의 크기 및 속도특성에 관한 실험적 연구)

  • Han, Jae-Seob;Kim, Seon-Jin
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.30-37
    • /
    • 1999
  • The breakup characteristics of liquid sheet formed by the liquid rocket injector has a close relation with the combustion efficiency. In this paper, basic characteristics of droplet size and velocity distribution were measured with PDPA for the Like Doublet Impinging Injector. Test variables were the angle of impact, the diameter of orifice and jet velocity. Water was used as test fluid. As a result, for impingement angle less than 90 degree, following correlations were obtained between drop size and design parameters : $D_{32}({\mu}m)=295.0{\times}V^{-0.09}\times(2\theta)^{-0.1}{\times}d^{0.072}$. For impingement angle greater than 100 degree, drop sizes were increased but eventually converged to a certain limiting value.

  • PDF

A Study on Fly-By-Wire Helicopter Control Law Design using SAS Actuators (안정성증강 작동기를 이용한 Fly-By-Wire 헬리콥터 제어법칙 설계에 대한 연구)

  • Kim, Eung-Tai;Choi, In-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2015
  • The previous limited authority system capable of implementing attitude command response type and translational command response type by operating SAS actuator has the problem of early saturation of SAS actuator since SAS actuator should compensate the mechanical linkage displacement caused by control sick movement. In this paper, a limited authority system where flight control computer receives the command from the control stick which is not connected to the mechanical linkage is described. In this system the compensation by the SAS actuator is not necessary and SAS actuator saturate later. SAS actuator saturation problem can be further relaxed by using the trim actuator. This new limited authority system is applied to BO-105 model, simulation is performed for the doublet input and pirouette maneuver is also simulated and analyzed.