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Abstract

PIV (particle image velocimetry) systems use a camera to take snapshots of particles carried by a
fluid at some precise instants. Signal processing methods are then used to compute the flow velocity
field. In this paper, the design of the camera objective (optics) is addressed. The optimization is done
in order to maximize the signal-to-noise ratio of in-focus particles. Four different kinds of noise are
considered: photon shot noise, thermal and read noise, background glow shot noise, and noise made by
the other particles. A semi-empirical model for the lens aberrations of a two-doublet objective is first
addressed, since further, it is shown that lens aberrations (low f-value f,) should be used instead of the
Fraunhofer diffraction (high f-value) for the fitting of the particle image size with the pixel size. Other
important conclusions of the paper include the expression of optimum values for the magnification M,
for the exposure period 7 and for the pixel size .

1 Introduction

Particle image velocimetry (PIV) is a technique for measuring the velocity field of gas or liquids. The field
is usually limited to a planar subspace (2D) and the velocity is described by vectors lying in this plane (2D).
However, 3D/2D PIV (multi-plane PIV) and 3D/3D PIV (stereo and holographic PIV) are also possible.

The idea of PIV is to observe particles carried by the flow to measure. The particles should be small
enough to faithfully follow the flow velocity variations, but big enough to be seen by a camera. Indeed, a
strobe light (or sometimes the camera shutter) is used to take snapshots of the particle positions at different
instants. The light is usually shaped (for 2D/2D PIV) in a light sheet that defines the measurement plane.
Image processing techniques can then compute the velocity field (and possibly other fields like rotational,
divergence, acceleration, etc.). The flow may naturally contain particles, e.g., dust or pollen for air flows,
bubbles or plankton for water flows, or may be artificially seeded with, e.g., oil droplets for gas, hollow
glass balls for liquids. An overview of modern PIV as well as other similar non-invasive optical techniques
for flow velocity measurements can be found in [6, 10].

The camera objective used in PIV applications is not optimized with the same criteria as for usual imag-
ing cameras. The latter is designed to take “good snapshots,” which generally means high resolution of
highly luminous and contrasted pictures of objects in a plane, with acceptable diminution of these perfor-
mances within a zone, on both sides of this plane, defined by the depth of field.

Alternatively and more generally, “good snapshots” can be defined as pictures with a high signal-to-
noise ratio. However, what is the part of the signal and noise of a picture is application dependent. The
“signal” is the information the end user (a human being, or a computer) would like to “see” in an ideal
perfect world in order to fulfill its need, and the “noise” is what conceals part of this information.

For a PIV system, the signal is, according to [1], the center position of identified particles at known
instants. Other approaches take into account the convolution process usually used to compute the velocity
field [8, 13]. In PIV applications, there is no specific need to have a good “portrait” of the particle: a particle
image may be fuzzy, as long as its center position is preserved. For the same reason, in PIV applications,
the classical definition of the depth of field has also to be revised. To avoid confusions, {11} speaks of
measurement depth and [13] introduces the notion of particle visibility.

The origins of noise are various and numerous. For example, the irregular shape of the particles (that
can rotate in its 3D world between two pictures) may introduce an error in the determination of the particle
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center. Other noise examples include the optical aberrations of the objective, the diffraction of the light
(speckles), the Brownian motion of the particles (for the emerging PIV applications using sub-micron par-
ticles), the optical shot noise, and the optical-electronic noise of the camera (or of the film, for film-based
PIV). Two other important sources of noise come from projection errors of out-of-focus particles (central
projection of usual objectives, also called perspective) and from the overlapping of other particle images,
especially for high particle density and/or in the case of volume illumination.

A camera objective (i.e., optics) usually contains many lenses (or possibly mirrors) in order to reduce
its noise {which is assumed to be mainly the lens aberrations, responsible for blurred images, and the
unwanted reflections at the lens interfaces and objective walls, responsible for poorly contrasted images).
Some special lens arrangements can even correct the projection errors mentioned above by replacing the
usual central projection with an orthogonal projection (telecentricity) [12]. However, the more lenses used,
the more attenuation of the light, since no lens is totally transparent and reflection free (appropriate lens
coating can however significantly reduce reflections).

To get the more light possible, the aperture of the objective should be chosen high, ie., low f-values
f« (or, equivalently, high numerical aperture NA). More light is advisory since the strobe light period can
be shorter (which allows the system to measure faster flows), or the size and price of the illumination
system can be reduced. For a given objective type, lower f-values however considerably increase the lens
aberrations [9, 15). Actually, as discussed further in the paper, the size of a particle image roughly grows
with 1/ f3 for low f-values with the consequence that the spot area increases with 1/ 2. On the other hand,
the light power going through the objective increases only with 1 / fj. This results in a lower light density
on the sensor, and thus a lower signal pet pixel. However, the size of the sensor pixels may be taken targer
to fit the wider spot (either physically, or by signal processing). This however diminishes the resolution
potential of the camera, which may be unwanted, since it reduces the product DSR x DVR. (“Dynamic
Spatial Range” times “Dynamic Velocity Range”) known to be a quality index for PIV cameras [1].

Additionally or alternatively, the maximal exposure period (defined by an acceptable blur caused by the
particle motion) can be longer for larger particle images with the consequence of increasing the sensor sig-
nal. However, larger particle images also have the effect of increasing the “apparent particle concentration”,
which is responsibfe for additional noise, and may finally result in a lower signal-to-noise ratio. The prob-
lem with PIV objectives is that many effects have to be taken into account in order to obtain the truth to the
question “What is the best f-value to chose?”, since simple models usually lead to contradictory answers
(as just discussed).

To completely answer this question, the lens aberrations should be taken into account. However, the
lens aberration models are usually difficult to derive and in the PIV literature, lens aberrations are usually
just mentioned, or in the best case, an expression is given for an objective comprising one plano-convex
lens only [15]. When the particle image has to be enlarged, the published solutions recommend to increase
the magnification M, or the f-value to take advantage of the Fraunhofer diffraction [1]. However, another
alternative may be to decrease the f-value and therefore using the lens aberrations. This paper investigates
this other option.

Besides, the PIV literature has just begun to consider some PIV setups with “volume illumination”
[11, 13). For this kind of illumination, the “noise made by the other particles” has somehow to be included
in the optimization process. In this paper, we try and systematically take into account the most relevant
factors that influence the signal-to-noise ratio to finally optimize the camera objective.

The camera objective will be assumed of a given type, and the optimization will only deal with the
three objective parameters s (the distance to the in-focus plane), M (the magnification) and especially f,
(the f-value). As for lens aberrations exact analytical models of objectives do not exist, we will derive
our conclusions from approximate models obtained empirically from ray tracing simulations. The chosen
objective type in this paper is made of two cemented doublets and constitutes a simple example for more
complex objectives.

2 Particle image size

2.1 Ideal objective

Object points are characterized by their intensity [ and their 3D-coordinates (pa;, Py, s + (). They are out-
of-focus when ¢ # 0 and in-focus when ¢ = 0. In the latter case, they define a plane approximately the
distance s away from the objective.
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Point images are homogeneously luminous discs with center (c;, c,) and diameter D, and are lighted
with the flux ® going through the objective. According to geometrical optics, the mapping that applies
luminous points onto point images is
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The three constants s, M (magnification) and f, (f-value), in addition to the above equations, completely
specify an ideal objective [9]. An ideal objective neither takes into account the wave nature of light (diffrac-
tion) nor the lens aberrations. Moreover, the projection is central (perspective).

The central projection has also the effect to change the apparent concentration of particles (the field of
view is wider for distant particles). For a uniform volume concentration C, the apparent concentration C’
is

2
¢ = [i]\}r—f] c )

Ideal telecentric objectives [12] have the equations (1) and (3) replaced by
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which is what would be obtained with an orthogonal projection. However, equation (2) still depend on ¢: a
telecentric objective does not prevent out-of-focus points to get fuzzy.

A normalized disc may also be described by a probability-like distribution (i.e., probability density
function or PDF)
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with, as an alternative measure of the disc size, the standard deviation
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2.2 Lens aberrations

Two parabolic surfaces (mirrors or lenses) are perfect for imaging one point only. Even worse, no point
at all can be perfectly imaged with spherical surfaces. Nevertheless, spherical surfaces are much easier to
manufacture than any other surface and several spherical lenses can significantly reduce the lens aberrations
[9]. This is the reason why most of lenses have spherical surfaces. However, no finite set of lenses (of any
shape) can make up an ideal objective.

The third order theory of lens aberrations results in the so-called Siede! sum which comprises five terms
[9]. The first term only depends on 1/ fi and stands for what is commonly called the spherical aberrations.
The coma is the second term with a dependence on 1/f2 and h/s, where h is the off-axis distance of a
luminous point at the in-focus plane. The third term models the astigmatism with 1/ f, and (h/ 5)2. The
curvature of field is the fourth term and also depends on 1/f, and (h/ s)2. Finally, the fifth term, the
distortion, is function of h/s only. Another aberration comes from the different colors of light and for this
reason is called chromatic aberration. However, the relatively monochromatic laser light usually used for
PIV results in much smaller chromatic aberration than what one is accustomed to have with anthropocentric
imaging applications. -

Lens aberrations are easy to simulate using the ray tracing method, which simply applies geometrical
optics to a bundle of rays. Ray tracing does not classify the aberrations like the third order theory does: all
aberrations of any kind are automatically taken into account. However, the results are valid only for one
specific value of (h,s, M, f,). As the analytical derivation of aberration expressions is very tedious (and
anyway approximative), in this paper a semi-empirical approach has been chosen: when analytical models
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Figure 1: Ray tracing of a simple two doublet objective. This objective was used in a MPIV (miniature
PIV) system developed by the authors [3, 4]. The upper row of sub-figures is for the off-axis point (h = 0)
and the lower row is for the most off-axis point (h = 4 mm) that still has its image on the camera sensor.

are too difficult to derive, empirical models that fit the results of many ray tracing simulations are seek. This
method is simple, general, quick and accurate.

In the PIV literature, lens aberration models are very rare and remain very basic. In [15] is mentioned
an analytically derived expression for spherical aberrations of a single plano-convex lens. However, a
practical objective would be composed of more than one lens and only very cheap objectives would use
plano-convex lenses. Figure 1 presents a ray tracing simulation of a more realistic objective composed of
two cemented doublets (achromats). This type of objective was actually used for a MPIV (miniature PIV)
system developed by the authors and described in 3, 4]. The sub-figure of the upper left corner shows, as
an example, some of the simulated rays for an on-axis point (b = 0). In the upper right corner is the section
of the simulated rays for the “best-focused” object point (definition in next paragraph). Since the objective
has a rotation symmetry, only rays for y > 0 are simulated; observe however that this does not prevent
the most external rays to intersect the image plane at y < 0. The lower left and right corners show similar
simulations performed for the “most” off-axis point (h >> 0).

An object point is best-focused when the size of its image spot is the less spread. A reasonable measure
of the size of the image spot is the standard deviation (or inertia circle) of the swarm of points obtained
with a ray tracing simulation. A higher weight is given to outer rays, since they subtend a wider solid angle.
With o, as the size of the particle image due to lens aberrations, one has, for NV rays
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where 8; is the angle between the optical axis and the ray i at the object point.

The camera sensor is usually planar, but the best-focused surface (defined by all best-focused points that
have their image at the sensor plane) is not planar because of the curvature of, “field. This aberration does not
allow any objective to perfectly map an object plane to an image plane: at least one of them is not exactly
planar. In the ray tracing simulation, the best-focused points have to be searched iteratively (e.g., dichotomy
search) since they are generally slightly off the in-focus plane defined by the ideal objective model.

Both curvature of field and distortion can be obtained by ray tracing or by calibration of a physical
objective. Therefore, the effect of these aberrations in a PIV context can be taken into account and corrected
when processing the velocity field. In other words, to optimize the objective of a PIV system, the only thing
that really matters is the spot of the best-focused points (size and possibly shape). The exact position
of the best-focused points projected onto the in-focus plane (z-, y-coordinates), or normal to this plane
(z-coordinate) are not relevant at this stage.

The spot of one best-focused point (size and shape) can be fully modeled by a distribution fa(z,y).
For a given objective, there is a different distribution f, for every best-focused point. However, since
objectives generally have a rotation symmetry, all points at the same distance h from the axis share the
same distribution.

Fortunately, a too fine model for the shape of f, is generally not necessary since fa is finally convolved
with many other contributions with the result of smoothing out the details [as we shall see at (16)]. The
most relevant information contained in the distribution f, is its standard deviation o, (the big circles in
Figure 1 have their radius equal to 0,). The standard deviation o still depends on h.

For quasi paraxial rays (h small}, the doublet aberrations is approximately constant. With the assump-
tion h = 0, one obtains the following empirical model [5]

Msyv1 + MS
31+ M)3

Ta =

0. =K, ®
where K, = 0.0033 for standard cemented doublets.

The image of an object point which takes into account the lens aberrations has a distribution f approxi-
mately given by the convolution

f=faxbi (10)

This expression is exact for in-focus points (since f; is a Dirac distribution) and for points much out-of-
focus (since f, is then negligible). For in-between points, it is a fair approximation (but is not exact, since
both f, and f; use the geometrical optics laws and are not totally independent). With this assumption (10),

the standard deviation is
o=1/o2+ 02 (11)

2.3 Fraunhofer diffraction

In the previous subsection, the images have been computed based on geometrical optics. However, the light
emitted by an in-focus object point diffracts through the circular aperture of a real objective, which results
in an image described by the Airy function {11, 9]

_ [2J1('u)]2 " T

(12)
where ) is the light wave length, J; a Bessel function of the first kind, and r the radial coordinate (r =
/7% + y?). This expression is derived for an in-focus object point on the optical axis, but can be used as a
fairly good approximation for off-axis points or for out-of-focus points (if convolved with f;). See [11] for
an exact expression.

As the Airy function slowly decreases, the standard deviation is infinite and cannot be used as a measure
of its expanse. Instead, the usual measure for the Airy function expanse is given by the radius of its first
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zero [15, 9]. However, such a measure is not compatible with the other contributions to the particle image
size: the sum of the square is no longer possible. To overcome this difficulty, the solution generally adopted
[2] is to approximate the Airy function by a (2D) Gaussian which, at zero, shares the same value, slope and
curvature

_ 22f,(1+ M)

T

fF(T) ~ e—'rz/crf« oF

(13)

2.4 Particle size

A particle reflects or scatters light depending on its size and on the wave length of the light used. The light
scattered by two points of the particle is generally not independent in phase, which makes modeling very
difficult. Moreover, the particle can be sufficiently transparent for the light to partially go inside and to
reflect many times with the surface. See [14] for a study of the particle image according to the Generalized
Lorenz-Mie theory.

The problem can be greatly simplified if one assumes that the particles are self-luminous (independence
of phase and with a Lambert emission, i.e., isotropic emission). This assumption generally means that
the interferences are not modeled. However, if fluorescence is involved {13], as the incident photons are
re-emitted with a random phase or with another wavelength, there is truly no interference possible. In the
other case, the assumption can be justified like for the lens aberrations: since many function f are finally
convolved together, the “details” of the shape are smoothed out. Only the standard deviation really matters.

A self-luminous sphere is seen as an homogeneously-luminous disc (like the sun or the moon), which
means that the distribution f;, is similar to (5). Therefore, the standard deviation oy, is

Md
23 19

Op =

where d is the diameter of the particle.
The convolution of f,, with the other contributions is exact with the self-luminous assumption.

2.5 Sensor pixel

The camera sensor (CMOS or CCD) consists in an array of photosensitive pixels. The numerical values the
camera provides are the integration of the light over the exposure period 7 and over the pixel sensitive area.
The spatial integration means that the camera sensor actually samples the image convolved with the pixel
sensitive area, instead of simply sampling the photo-image.

The pixel area is a square of size £ containing the sensitive area plus the electronics accessing the pixel
(which does not take part in the light integration). To simplify the modeling, let us assume that the sensitive
area is a disc of diameter c£, with a fill factor ¢ < 1. This disc can be described by a distribution f. similar
to (5). The standard deviation o is

o= £ (15)

2.6 Immobile particle

The image of a particle in an immobile fluid can therefore be modeled by its distribution f that takes
into account the size of the particle, the camera resolution and the camera objective, which includes the
geometrical optics, the lens aberrations and the Fraunhofer diffraction

f=foxfi fo=Ffex foxfrx*fa (16)
where f; is the in-focus part. For particle much out-of-focus, f will be approximately equal to f; (which is
a disc) since f, is negligible. For in-focus particle, f; vanishes, but the exact distribution of fo is not known.
However, a Gaussian distribution is usually considered as a sensible approximation, since fq is the result of
many convolutions. With comparable standard deviations, the convolution of many functions tends rapidly
towards a Gaussian function (limit central theorem). In any case, the standard deviation ¢(¢) of f is

o(¢) = \/a? + 0?(C) oy = \/03+a§+0§ +02 )

where ¢q is the in-focus part.
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2.7 Mobile particle

The longer is the exposure time 7, the more light is collected by the sensor. However, if 7 is too large with
respect to the particle velocity v, the particle image will change to a path, i.c., the image of the particle
trajectory.

If a mathematical point were the image of a particle moving at constant velocity v, the image would
be, for the whole exposure period 7, a line segment of length Mvr. The standard deviation o, of such a
segment is

O__M’UT
T 2\/3

Thus, the standard deviations of a real particle image in the displacement direction and in the transverse
direction are

(18)

op=14/02+ (19

)
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2
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3 Signal

3.1 Pixel size

For a signal to be properly sampled, the Shannon-Nyquist theorem requires that the sampling frequency be
higher than twice the signal highest frequency. The highest frequencies are for the most narrow section of
the particle images, i.e., for the transverse section of the path made by an in-focus particle (i.e., described
by o). If the intensity function of this section is assumed Gaussian, i.e., in proportion to exp(—t2/20% )
(where t is the transverse coordinate), then its spectrum is in proportion to exp(—2n202 f?), where f is the
frequency. In other words, the spectrum of the ¢, Gaussian is still a Gaussian, but with standard deviation
1/27o ;. One can assume that a Gaussian is negligible beyond an arbitrary multiplicity 3 of its standard
deviation (£ is usually chosen around 3, but for PIV, it is acceptable (and sometimes better) to usc lower
values, e.g., v/3 according to [16]). Thus, the sampling period is expressed by
™

{= BUJ_ 20)

Usually, the sampling period is given (for example, by the specific technology of the camera), and the
objective has to be designed accordingly [1]. Thus, for a given £, one should have

BV2
UO(S7M7 f#) = TE (21)
This constitutes the first equation. Two others are needed to uniquely define the objective parameters s, M
and f,.
For very high f-values, the Fraunhofer diffraction are dominant. Thus,
2 27 1. (1
M{:go,@aF:M (22)
1r s
and, solving this equation for f,
B¢
N _ 23
To V2A(1 + M) 23)
On the other hand, for very low f-values, the lens aberrations are dominant, and one has
V2 Msy/1+ MP®
—-—'8 5 =09 ROy = Ka——————————3 3 (24)
™ SR+ M)
ie.,
1/3
f = TK.Msv1+ M5 25)
* V2(1 + M)*p¢
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3.2 Exposure period

The longer the exposure period 7, the higher is the camera signal. However, as the particles are moving, a
too long exposure transforms the particle images to traces with the main undesirable effect of increasing the
“noise” caused by neighbor particles (that more frequently overlap).

However, even if one consider an isolated particle, the maximum intensity of the particle trace is already
reached after a short displacement of the particle. With the Gaussian assumption of the in-focus particle
images, one can again consider the Gaussian distribution null beyond o . Therefore, the intensity of the
particle trace is maximum for a particle displacement of 280 . Thus, there is no gain to use exposure
periods 7 longer than

V28 25*

Tmax = WUO = TI'M'UE . (26)

where v is the particle velocity. The corresponding o, is Bop/v/6.
The exposure period 7y, that gives the best signal-to-noise ratio has to be optimized in consideration
of the influence of the other particles [see (49)].

3.3 Signal

The signal of a particle image can be estimated by integrating the average light over the pixel area (mc2£2/4)
and over the exposure period 7. The average light is defined to be the light flux & entering the objective
divided by the “particle image area” more or less arbitrarily assumed to be 27 o (ellipse surface at the
standard deviation “radius”).

2¢2 2
_ 7% [ Ms ] I @7
80'_L0’|| f#(1+M)(S+<)
For in-focus particles, one obtains
3n2érIct M?

So = V3rerle 28)

46f2(1 + M)2\/n2M 2212 + 1232€2

and for much out-of-focus particles (o =~ g;)
2rc2€2]

S = W 29

4 Noise

4.1 Photon shot noise

Any photo-sensor has a fundamental noise caused by the discrete nature of photons {7]. The variance of
this noise is in proportion to the optical signal. Thus, the noise standard deviation is

Ngp = KpnV'S (30)

where Ky, 15 a constant.

4.2 Thermal and read noise

CMOS or CCD camera are electronic devices and are subject to thermal noise v4kT B, where B is the
bandwidth and k the Bolzmann constant {7]. In a camera, this noise is integrated over the exposure period
7 and over the pixel area mc2£2/4, i.e., the noise is in proportion to /7c2kT BT£2. As the bandwidth B
for an integration over 7 is 1/7, the thermal noise is

New = Knct VT 3

where Ky, is a constant.

In a CMOS or CCD camera, the thermal noise also introduces a charge uncertainty when the pixel
capacities are reset. Even though the origin of this noise is thermal, the so-called read noise is usually
considered as an independent source of noise, because the means used to reduce it are specific. However,
in our study, its formulation is identical to the other sources of thermal noise (as described above).
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4.3 Noise made by the other particles

The noise caused by other particles is very important in PIV applications, especially for high particle con-
centration or volume illumination. However, its formulation is difficult, since it depends for a large part on
the ability of the PIV algorithm to identify a given particle [1]. Figure 2 shows simulations performed for
an increasing width A(¢ of the light sheet. The particles are idealized in the sense that they are perfectly
spherical and all of the same size. The objective follows the ideal objective model and the particle images
are assumed to be Gaussian. Every image is normalized with respect to its maximum and minimum inten-
sity, except for a zone in the upper left corner of each image which is kept with the absolute intensity, i.e.,
with the same “gain” for every image.

The noise due to overlapping is indeed low for thin light sheets. Subjectively, one can decide that the
noise is acceptable up to A¢ = 1.6 mm in the example of Figure 2. For thicker light sheet, many particles
overlap and errors in the particle identification and localization are to be expected, especially for the most
out-of-focus particles. From A¢ ~ 50mm, even the in-focus particles are difficult to extract, since the
“background glow* reaches a very high intensity.

A given particle is “difficult to identify and localize™ if, at the particle position, the other particles
substantially contribute to the image intensity. Thus, an important step in the formalization of the “noise
made by the other particles” is achieved with the statistics of the image intensity.

The probability to have, at a given pixel (z,y) of the image, an intensity H resulting from a unique
particle, anywhere in a given object plane (¢ given), is described by a probability density function hy (H).
The random variable H has the following average and variance

71,0262 P W204§4 2(1)2
B = T— % f vy = 6 T I

ff7 - (32)

where A is the area in which the particles are confined. The convolution with the constants ®/A4 and $?/A4
actually performs the average of ® f, respectively (@ f)2. At first, it could look strange to use a convolution
to evaluate an average. However, this is the correct expression for non homogeneous illumination, i.e., when
® depends on (z, y).

In practice, the concentration C of particles is not high enough for the particles to significantly disturb
each other (the volume taken by the particles is negligible with respect to the fluid volume). Consequently,
the distribution h; for a given particle can be assumed unchanged if the particle is isolated or surrounded
by other particles.

The number dN of particles in a given plane and confined in the area A is

[s+¢1°

dN = AC'd¢ ==

ACd¢ (33)
At a given point (z,y) of the camera sensor, the intensity is the sum of the contribution due to these dNV
particles described by the same probability distribution h;. Thus, the distribution of the intensity tends to a
Gaussian distribution, whatever is the distribution h; (central limit theorem), with average

_ IS N S
dpg = mdN = 1 TC L+ M) (I« f)d¢ (34)
and variance (with A — o0)
= _metet oL Ms ]2 2, g2
dv = 1dN = 16 7°C PUF MG L0 (17 * f9)d¢ (35)

The particles illuminated by a transversal, infinitesimally thin, light sheet have the same ¢ and the same
illumination intensity I. As in this case the expression I * f = I(f = 1) = I holds for any distribution f,
the average illumination is the general expression

m2? [ 1 7
7 ¢ .+ M)

dp = d¢ (36)

The variance however depends on the distribution £, but by chance, 1 * £2 is equal to 1/27a? for a disc or
a Gaussian distribution. Thus, for in-focus particles, one obtains, with the assumption that fo is a Gaussian
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Figure 2: Typical pictures obtained with increasing light sheet thickness (simulation). White corresponds
to obscurity and black to the maximum of light got in the picture, except in the upper left corner of the
pictures where black corresponds to the maximum of light got in picture A¢ = 89 mm (this for absolute
intensity comparison between pictures). General parameters are s = 100mm, fx = 1.9, M = 0.5,
a0 = 12 pm, C = 5/mm?, observation area is 6.4 mm X 4.8 mm, (p = —Ca.
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or a disc
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and, for much out-of-focus particles

ded, 272 2
dVi___7rc§'rIC[ 1 1 ¢ (38)
4 fo(L+ M)MC
There is even a close expression for any ¢
4¢4, 272 2
duzchTICf M ] d¢ (39)

4 f(1+ M) MA3C2+802f2(1+ M)?

where the very reasonable assumption s 3> oo was taken into account to simplify the expression.

The light sheet used in a classical PIV is usually thin, but not infinitesimal. Thus, the correct expressions
have to be integrated over the “thickness” of the light sheet. The resulting average is still valid for any
distribution f

722 TICAC
== 2 40
HE ARt My (40)
where A( is the thickness of the light sheet.
The variance can be obtained in a close form only with the Gaussian/disc assumption
4¢4,2120 M2 2
v= meer l—arctan ——Ca—— — arctan —~—M—Cb——] (C3))
16v200f3(1 + M) 2V200 f4(1+ M) 2V200 f4 (1 + M)

where (, and ¢}, define the boundary of the light sheet.

Illumination with a very thick light sheet turns into what is called volume illumination [11, 13]. In
volume illumination, the function arctan of the variance (41) may tend to its asymptotes at £ /2. In this
case, the variance is reduced to

204¢422120
po 8T “2)
16v200f3(1+ M)?
Observe that the variance for a “symmetric” thick light sheet (¢, = —(.) s twice bigger than the variance

for a light sheet with one face coinciding with the in-focus plane (¢, or {p nuil).
For very thin light sheet, the function arctan z of the variance (41) can be approximated by z. One
obtains

44 2I2CM2A
AR e J “3)
6405 fA(1+ M)*
In other words, taking into account (21), we have
3,403,272 3,:4£2,2120 M2
m3cteireI“C w3t I*C M AG @)

VS mppdrMyP T T128@ LI+ M)

The average 4 is a constant that can be removed from the image. However, the shot noise associated
with z cannot be removed. This special shot noise will be further discussed in the next subsection.

The real “noise made by the other particles” is not expressed by the average y, but by the standard
deviation /v. Consequently, the noise is bounded by

9 m3E3C TIc%eM m3CA(
Np <7le \ 32673(1 + M) M < ggpar V2 “)

133



4.4 Background glow shot noise

Even though the background glow caused by the other particles can easily be removed from an image, the
shot noise associated with it cannot be eliminated and constitutes a specific source of noise Ny

cE/mTICAQ
Ny =K = K- 4

gl Phﬂ ph Qf#(l +M) ( 6)
where Ko}, is the constant defined in subsection 4.1 for the photon shot noise.
5 Signal-to-noise ratio
5.1 Definition
The signal to noise ratio is defined by

S S

47

N A
N2+ N + N2+ N;

Depending on the situation anyone of the four noises Npy, Nen, Np and Ng can be dominant. In order
to maximize the signal-to-noise ratio, let us assume that each of these noises is dominant in turn.

5.2 Dominant background glow shot noise

When the background glow shot noise V) is dominant, the signal-to-noise ratio Sp//N becomes

ﬂi_ _ cM? 337l
Nyl B 2Kphﬁf#(1 + MY CA{(m2 M2 + 1282£2)

(48)

The signal-to-noise ratio Sp/Ng can be maximized with respect to the exposure period 7. Indeed, the
expression 7 /(72 M2v27% 4 1232¢?) reaches its maximum for

238

T =
opt mMuv ¢

(49)

If 3 is chosen equal to V3, Topt €qUAlS Tryay Of (26). With 74, the signal-to-noise ratio expression So/Ng

becomes
So _ me V3IM3 (50)
Ny 4Kpnfu(1+ M)\ ECALB3Y

The minimum particle image size o has been fixed by £ at (21). Consequently the f-value cannot be
arbitrarily chosen, but must give the corresponding op. However, oy is getting large for either high f-values
(Fraunhofer diffraction) or low f-values (lens aberrations). Thus, to match the g fixed by £ (21), there is
the choice to take lower or higher f-values. On the other hand, to maximize the signal-to-noise ratio (as one
can see in the above equation), the f-value should be small. Thus, the lens aberrations should be preferred
to the Fraunhofer diffraction.

With the expression of f, relative to the lens aberration (25), one obtains the column Sp/Ng of Ta-
ble 1. This table summarizes the qualitative variations of the signal-to-noise¢ ratio with respect to the design
parameters. The quantities are expressed in a logarithmic way. For example, the signal-to-noise ratio
So/Npn increases like 27/3 when the distance to the in-focus plane s decreases like s~" (in other words,
So/Nph ox s71/3), :
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Table 1: Logarithmic variations of the signal-to-noise ratio So /N

So/Npn  So/Nen  So/Ng So/Np
AC>0 AC=~O
s -1 (distance to meas. plane) +1/3 +2/3 +1/3 +1/6 0
M +1 (magnification) M > 1 -5/6 -5/3 +1/6 +8/6 +1
M<«1l +1/6 +1/3 +7/6 +11/6 +1
& +1 (pixel size) +5/6 +2/3 -1/6 -4/3 -1
¢ 41 (fill factor) +1 +1 +1 +0 +0
I +1 (illumination intensity) +1/2 +1 +1/2 0 0
A¢ —1 (light sheet thickness) 0 0 +1/2 0 +1/2
C -1 (particle concentration) 0 0 +1/2 +1/2 +1/2
v —1 (particle velocity) +1/2 +1 +1/2 0 0
T -1 (temperature) 0 +1/2 0 0 0

5.3 Dominant noise made by the other particles
When the noise N, made by the other particles is dominant, the signal-to-noise ratio Sg/N tends to

Sy M?2\/6x Sy 2V6M

= > —_ >

Np = JECBf(1 + M)(m2M?20v272 + 1232€2) Np = /nrCA(M2v272 4 1252€2
The best signal-to-noise ratio is obtained for an exposure period 7 equal to zero. Of course, if 7 is too small,
the other noises will be dominant. As the exposure period 7o given in (49) is a sensible value between 0
and Tiax Of (26), let us assume that the best exposure time is Topt, in any situations (in any case, as long

as 7 is chosen in proportion to £/Mv, all the conclusions presented in this paper still hold). With this
assumption, one obtains a closer expression for the signal Sy of (28)

_ VergI*M
T 88f2(1+ M)

(51)

So (52)

and for the signal-to-noise ratio Sp /N,

S() M2 ™ S() M ™
N, 2 \E@CFLA+M) N, peYCAC 53)

When taking into account the expression (25) for f,, one eventually obtains the column 5o /Np of Table 1

5.4 Other dominant noises

For PIV with low particle concentration C or possibly with low illumination intensity I, the dominant
noise is no longer the noise made by the other particles or the background glow shot noise, but rather the
photon shot noise or the thermal/read noise. One has when the photon shot noise is dominant and when the
thermal/read noise is dominant

So c Vo6reIM S VérlcM (54)
Non  Kpnfe(1+ M) 88v N 8KwBr2(1+ M)20VEkT

The signal-to-noise ratio still could be improved for low f-value, i.c., for dominant lens aberrations.
One obtains the column So/Npy and Sg/Nyp, of Table 1. When these noises are dominant, there is an
optimal magnification M,yp.. Indeed, the function M /(1 + M®) has a maximum at

1 1/6
Mopt = I—g-] =~ 0.58 (55)

Contrary to the other noises, an increase in the pixel size £ results in an increase of signal-to-noise
ratio. This is not very surprising, since larger pixels allow one to use an objective with lower f-value and to
increase the exposure period. The interesting conclusion is that there exists an optimum value qp, for the
pixel size that balances the “camera noises” (photon noise and thermal/read noise) and the “particle noises”
(background glow and noise made by the other particles).
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6 Conclusion

The question addressed in this paper is: “What are the optimal quantities (related to the objective) that
maximize the signal-to-noise ratio in a PIV setup?” To answer this question, we define the “signal” Sy as
the gray value of one pixel centered on an in-focus particle image. Depending on the application, any of the
following noises can be dominant:

1.
2.
3.
4.

Npy, fundamental photon shot noise
Ny, thermal and read noise
Ny, background glow shot noise

Ny, noise made by the other particles

The following conclusions are read directly from Table 1. Conclusions 1 to 6 are expected by the
common sense. Conclusions 7 to 9 are more interesting.

1.
2.

The fill factor ¢ of the camera pixels should tend to its maximum 1.

The illumination intensity I should be chosen as high as possible.

. The thickness A¢ of the light sheet should be minimized.

. The particle concentration C should be low.

The slow flows (small v) are easier to measure.

. The camera should be actively cooled (low temperature T).

There is no optimal values for s, but there is a (slight) advantage to chose it the smaller possible, i.e.,
to have the objective the closer to the measurement plane.

. If the photon shot noise or the thermal noise is dominant, there is an optimum magnification Mop¢ ~

0.58. If the other noises are dominant, there is no optimum for M, but high values are preferred.

. The pixel size ¢ is generally given by the sensor technology, but image processing can “enlarge” it.

Large values yield to better signal-to-noise ratio when the photon shot noise and the thermal/read
noise are dominant. In the other case, small values give better results. This means that there exists
an optimal pixel size £qpy that maximizes the total signal-to-noise ratio Sp/N. This optimum can be
easily found by numerically computing So/N for different values of £ and eventually selecting the
best one.

Other important conclusions are:

o For a dominant background glow shot noise, there is an optimal exposure period 7opt, 1.€., that max-

imizes the signal-to-noise ratio [equation (49)]. For the other noises, the influence of 7 is low and 7
is bounded within 0 and 7max. The consequence is that the same optimum exposure period T,pt €an
be reasonably used.

e The f-value f, of the objective has to be chosen as low as necessary to obtain a particle image large

enough to fit the pixel size £ by means of the lens aberrations [equation (25)].

This last conclusion is different from what is usually proposed in the literature, i.e., to enlarge the
particle image by means of the Fraunhofer diffraction. A reason why the Fraunhofer diffraction is usually
preferred may come from the lack of close and general expressions for lens aberrations. In this paper, the
lens aberrations of a simple objective (comprising two doublets) have been empirically modeled from the
results of many ray tracing simulations. This method has proved itself to be easy, accurate and effective.
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