• 제목/요약/키워드: Double-skin

검색결과 294건 처리시간 0.022초

팬을 부착한 이중외피의 이론적 검토 및 적용성에 대한 실험 연구 (Theoretical Review and Experiment on Applicability of Double Skin Facade Ventilated by Fans)

  • 임지혜;손장열
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.605-613
    • /
    • 2010
  • Double skin facade(DSF) ventilated by fans consists of a normal external and an internal envelope. In this glass layer, the installed fan replaces an air inlet for the control of air flow through the cavity. The purpose of this paper is to investigate physical theory and to analyze the applicability of fans installed in a DSF. The experiment was conducted in 2 rooms. One room has a DSF with installed fans and the other one has a typical window. The room ventilated through a DSF which fans are installed was always kept warmer than the other room, ventilated directly from the outdoors. The average increase of the supplied air temperature through the DSF ventilated by fans was $6.54^{\circ}C$ at 78CMH, $6.2^{\circ}C$ at 95CMH, and $3.7^{\circ}C$ at 120CMH. As a result, the DSF with installed fans was appropriate for installation in rooms. It supplies outdoor fresh air heated through a cavity and ventilates a constant air volume.

이중외피 형상에 따른 모델 보정과 local 기상 정보의 필요성 (Calibration of Double-skin Simulation Model Depending on Configuration And Impact of Local Weather Information)

  • 윤경수;김덕우;이건호;박철수
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.142-147
    • /
    • 2009
  • In order to achieve performance assessment and optimal control of a double-skin system, an accurate simulation model is required. In the previous study, a lumped simulation model of such system was developed. As a follow-up of the previous research, the first objective of this paper is to investigate how the mathematical model should be calibrated according to system configuration(cavity width, depth, height, airflow pattern, local environment, etc.). And the second objective of this study is to discuss the effect of local weather information. In conclusion, this paper describes that the model should be recalibrated according to configuration. And it is necessary to have local weather information for accurate prediction and optimal control of the system.

  • PDF

공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토 (Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment)

  • 노지웅;김곤
    • KIEAE Journal
    • /
    • 제7권6호
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

등축 유로 장착 이중 태양열 진공관의 열적 특성에 관한 수치해석적 연구 (A Numerical Study on the Thermal Characteristics of Double Skin Vacuum Tubes with Coaxial Fluid Conduit)

  • 현준호;박윤철;천원기;이상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.567-570
    • /
    • 2006
  • A numerical study has been carried out for a solar water heater which consists of double skin solar vacuum tubes. Water is heated as it flows through the coaxial fluid conduit inserted in each tube. The space between the exterior of the fluid conduit and the glass tube is tilled with antifreeze solution. This is to facilitate heat transfer from the solar heated absorber surface to water and to prevent the functional problems due to freezing in frigid weather conditions. A one-dimensional steady state model is fully described which will be used to develop three-dimensional model using STAR-CD. These models could be used efficiently in designing double skin solar collector tubes with different geometrical parameters other than those considered in the present analysis. Results show a good agreement when compared with other experimental data demonstrating the reliability of the one-dimensional model employed.

  • PDF

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

  • Ren, Qing-Xin;Hou, Chao;Lam, Dennis;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.667-686
    • /
    • 2014
  • Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.

광기능성 창호시스템의 동절기 채광특성에 관한 목업연구 (Full-scale Mock-up Measurement of a Double Glazed Window System Equipped with Sunlight Controls)

  • 김곤
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.35-42
    • /
    • 2008
  • Besides genuine skin and clothes, it is called that building is third skin for us. That means the skin of buildings is the most important factor for our man-made environment. The issues in designing the building envelope include the insulation, infiltration, ventilation and bridging in windows. Getting light into the space safely and providing views to outdoor, additionally, are key things with the building envelope design. A deep-rooted preference for full view is still alive with large area of glass. Balcony expansion is legalized in apartment houses, which causes lots of environmental problems. Without balcony space, the adjacent space to unshaded window is exposed to the direct sun. A window can have many layers and the inner space can be utilized with an automatic blind system. Recently, the refurbished version of a double-glazed window system has been developed for the purpose of minimizing energy loss occurred around windows. For the better daylight control with equipped blind system, a set of adjustment technique of blind slats was tested in a mock-up building and recommended the detail operation. Not surprisingly, the optimized blind system can be oriented to enhance the uniformity in light distribution and direct glare from the sky as well..

초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교 (Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows)

  • 최태환;전미숙;이정현;김태연;이승복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

주거건물용 이중외피 통합형 전기집진기의 미세먼지 집진성능 수치해석 평가 (Numerical Study of Particle Collection Performance of Electrostatic Precipitator Integrated with Double Skin Façade in Residential Buildings)

  • 엄예슬;최동희;강동화
    • 대한건축학회논문집:구조계
    • /
    • 제34권12호
    • /
    • pp.73-82
    • /
    • 2018
  • The objective of this study was to evaluate particle collection performance of electrostatic precipitator (ESP) integrated with double skin façade in naturally ventilated residential buildings using numerical method. To evaluate the efficiency, computational fluid dynamics (CFD) simulation based on electric potential and Lagrangian method was applied. The CFD model was validated by comparing the simulated results with the experimental data including thermal characteristic of double skin façade (DSF) and particle removal characteristic of electrostatic precipitator. The validation results showed that the root mean square error (RMSE) between predicted values and measured values of velocity and temperature in intermediate space of DSF was 1.2%. The adequacy of ion space charge density and turbulent model were determined. The RMSE between predicted values and measured values of collection efficiency of ESP was 9.2%. In addition, the case study was performed to present the application of the numerical method based on validation results of ESP integrated with façade.

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.

소규모 사무공간의 조명에너지 절감율 평가에 관한 연구 (Evaluation of Lighting Energy Saving Rate in a Small Office Space)

  • 김한용;윤경;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.50-58
    • /
    • 2012
  • The objective of this study is to evaluate the lighting dimming rates with various parameters of the building skin in a small office. We compared to simulated workplane illuminance and measured workplane illuminance for the base model. After that, the five veriables(the presence of vertical wall in double skin facade, the presence of windowsill, window to wall ratio(WWR), window visible transmittance, the width of double skin facade) were applied to base model, and we analyzed the simulated lighting energy saving rates. The results are listed as below. The simulated workplane illuminance results are similar to the measurement. Simulated illuminance was smaller than measured illuminance by 16.5%(60 lx). In accordance with applicable building skin parameters, lighting energy saving rate results are summarized as follows. Lighting energy saving rate of case1(windowsill height 0.7m) is higher than that of base case(windowsill and vertical wall) by 7.3% and the lighting energy saving rate of case2(no vertical wall) is higher than that of base case by 7.6% and the lighting energy saving rate of case3(no windowsill and vertical wall) is higher than that of base case by 12.4%. The lighting energy saving rate is increased by 2.3%, when window visible transmittance is increased from 70% to 86%. The lighting energy saving rate is increased by 4.6%, when we changed the WWR 70% to 90%. lighting energy savings rate is increased by 6.5%, when the width of double skin facade is reduced from 1m to 0.3m.