• Title/Summary/Keyword: Double-layer Deposition

Search Result 93, Processing Time 0.029 seconds

Fabrication of CVD SiC Double Layer Structure from the Microstructural Change Through Input Gas Ratio (입력기체비를 이용한 미세구조 변화로부터 화학증착 탄화규소의 복층구조 제작)

  • 오정환;왕채현;최두진;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.937-945
    • /
    • 1999
  • In an effort to protect a RBSC(reaction -bonded SiC) tube SiC films from methyltrichlorosilane(MTS) by low pressure chemical vapor deposition were deposited in hydrogen atmosphere on the RBSC(reaction-bonded SiC) substrates over a range of input gas ratio(${\alpha}=P_{H2}/P_{MTS}=Q_{H2}/Q_{MTS}$=1 to 10) and deposition temperatures(T=1050~1300$^{\circ}C$). At the temper-ature of 1250$^{\circ}C$ the growth rate of SiC films increased and then decreased with decreasing the input gas ratio. The microstructure of SiC films was changed from granular type structure exhibiting (111) preferred orientation in the high input gas ratios to faceted columnar grain structure showing (220) in the low input gas ratios. The similar microstructure change was obtained by increasing the deposition temperature. These results were closely related to a change of deposition mechanism. Double layer structure having granular type and faceted ciolumnar grain structure from the manipulation of mechanism. Double layer structure having granular type and faceted columnar grain structure from the manipulation of the input gas ratio without changing the deposition temperatue was successfully fabricated through in -site process.

  • PDF

Development of a New Double Buffer Layer for Cu(In, Ga) $Se_2$ Solar Cells

  • Larina, Liudmila;Kim, Ki-Hwan;Yoon, Kyung-Hoon;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.152-153
    • /
    • 2006
  • The new approach to buffer layer design for CIGS solar cells that permitted to reduce the buffer absorption losses in the short wavelength range and to overcome the disadvantages inherent to Cd-free CIGS solar cells was proposed. A chemical bath deposition method has been used to produce a high duality buffer layer that comprises thin film of CdS and Zn-based film. The double layer was grown on either ITO or CIGS substrates and its morphological, structural and optical properties were characterized. The Zn-based film was described as the ternary compound $ZnS_x(OH)_y$. The composition of the $ZnS_x(OH)_y$ layer was not uniform throughout its thickness. $ZnS_x(OH)_y$/CdS/substrate region was a highly intermixed region with gradually changing composition. The short wavelength cut-off of double layer was shifted to shorter wavelength (400nm) compared to that (520 nm) for the standard CdS by optimization of the double buffer design. The results show the way to improve the light energy collection efficiency of the nearly cadmium-free CIGS-based solar cells.

  • PDF

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Double Layer (Wet/CVD $SiO_2$)의 Interface Trap Density에 대한 연구

  • Lee, Gyeong-Su;Choe, Seong-Ho;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.340-340
    • /
    • 2012
  • 최근 MOS 소자들이 게이트 산화막을 Mono-layer가 아닌 Multi-Layer을 사용하는 추세이다. Bulk와 High-k물질간의 Dangling Bond를 줄이기 위해 Passivation 층을 만드는 것을 예로 들 수 있다. 이러한 Double Layer의 쓰임이 많아지면서 계면에서의 Interface State Density의 영향도 커지게 되면서 이를 측정하는 방법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 $SiO_2$ Double Layer의 Interface State Density를 Conductance Method를 사용하여 구하는 연구를 진행하였다. Wet Oxidation과 Chemical Vapor Deposition (CVD) 공정을 이용하여 $SiO_2$ Double-layer로 증착한 후 Aluminium을 전극으로 하는 MOS-Cap 구조를 만들었다. 마지막 공정은 $450^{\circ}C$에서 30분 동안 Forming-Gas Annealing (FGA) 공정을 진행하였다. LCR meter를 이용하여 high frequency C-V를 측정한 후 North Carolina State University California Virtual Campus (NCSU CVC) 프로그램을 이용하여 Flatband Voltage를 구한 후에 Conductance Method를 측정하여 Dit를 측정하였다. 본 연구 결과 Double layer (Wet/CVD $SiO_2$)에 대해서 Conductance Method를 방법을 이용하여 Dit를 측정하는 것이 유효하다는 것을 확인 할 수 있었다. 본 실험은 앞으로 많이 쓰이고 측정될 Double layer (Wet/CVD $SiO_2$)에 대한 Interface State Density의 측정과 분석에 대한 방향을 제시하는데 도움이 될 것이라 판단된다.

  • PDF

Study on the eletronic absorption and surface morphology of phthalocyanine double layer thin films

  • Heo, Il-Su;Ryu, Il-Hwan;Hong, Da-Jeong;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.337-337
    • /
    • 2011
  • The elecronic absorption and surface morphology evolution of two types of molecular double layer thin films, copper phthalocyanine(CuPc) layer deposited on top of chloro[subphtalocyaninato]boron(III) (SubPc) layer, denoted as SubPc/CuPc, and vice versa, at various thicknesses were invertigated using ultraviolet(UV)-visible spectroscopy and atomic force microscopy (AFM). Both types of double layer structures showed similar broadened absorption patterns in UV-visible region which were well consistent with fitted spectra by a simple linear combination of single layer absorption spectra of two materials. In contrast, the surface morphology of double layer structures was dependent on the order of deposition. For CuPc/SubPc structures, the surface morphology was characterized by elongated grains, characteristic of SubPc thin films, indicating the morphological influence of underlying CuPc layer on subsequent SubPc layer was not large. For SubPc/CuPc structures, however, the underlying SubPc layer acted as a morphological template for the subsequently deposited CuPc layer. It was also observed that the grain size of CuPc layer varied by the thickness of underlying SubPc layer.

  • PDF

Ultra Thin Film Encapsulation of OLED on Plastic Substrate

  • Ko Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Lee, Jeong-Ik;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2004
  • Fabrications of barrier layer on a polyethersulfon (PES) film and OLED based on a plastic substrate by atomic layer deposition (ALD) have been carried out. Simultaneous deposition of 30 nm of $AlO_x$ film on both sides of PES film gave film MOCON value of 0.0615 g/$m^2$/day (@38$^{\circ}C$, 100 % R.H.). Moreover, the double layer of 200 urn $SiN_x$ film deposited by PECVD and 20 nm of $AlO_x$ film by ALD resulted in the MOCON value lower than the detection limit of MOCON. The OLED encapsulation performance of the double layer have been investigated using the OLED structure of ITO/MTDATA(20 nm)/NPD(40 nm)/AlQ(60 nm)/LiF(1 nm)/Al(75 nm) based on the plastic substrate. Preliminary life time to 91 % of initial luminance (1300 cd/$m^2$) was 260 hours for the OLED encapsulated with 100 nm of PECVD deposited $SiN_x$/30 nm of ALD deposited $AlO_x$.

The properties of copper films deposited by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의해 증착된 구리막의 특성)

  • 송재성;오영우
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.727-732
    • /
    • 1996
  • In the present paper, the Cu films 4.mu.m thick were deposited by RF magnetron sputtering method on Si wafer. The Cu films deposited at a condition of 100W, 10mtorr exhibited a low electrical resistivity of 2.3.mu..ohm..cm and densed microstructure, poor adhesion. The Cu films grown by 200W, 20mtorr showed a good adhesion property and higher electrical resistivity of 7.mu..ohm..cm because of porous columnar microstructure. Therefore, The Cu films were deposited by double layer deposition method using RF magnetron sputtering on Si wafer. The dependence of the electrical resistivity, adhesion, and reflectance in the CU films [C $U_{4-d}$(low resistivity) / C $U_{d}$(high adhesion) / Si-wafer] on the thickness of d has been investigated. The films formed with this deposition methods had the low electrical resistivity of about 2.6.mu..ohm..cm and high adhesion of about 700g/cm.m.m.

  • PDF

Study on Electronic Absorption and Surface Morphology of Double Layer Thin Films of Phthalocyanines

  • Park, Gyoo-Soon;Heo, Il-Su;Ryu, Il-Hwan;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.943-946
    • /
    • 2011
  • The electronic absorption and surface morphology evolution of two types of molecular double layer thin films, copper phthalocyanine (CuPc) layer deposited on chloro[subphthalocyaninato]boron(III) (SubPc) layer, denoted as SubPc/CuPc, and vice versa, with various thicknesses were investigated using ultraviolet (UV)-visible spectroscopy and atomic force microscopy (AFM). Both types of double layer structures showed similar broadened absorption patterns in the UV-visible region that were consistent with the fitted spectra following simple linear combination of the single layer absorption spectra of the two materials. In contrast, the surface morphology of double layer structures was dependent on the order of deposition. For the CuPc/SubPc structures, surface morphology was characterized by elongated grains, which are characteristic of SubPc thin films, indicating that the morphological influence of the underlying CuPc layer on the subsequent SubPc layer was not large. For the SubPc/CuPc structures, however, the underlying SubPc layer acted as a morphological template for the subsequently deposited CuPc layer. It was also observed that the grain size of the CuPc layer varied according to the thickness of the underlying SubPc layer.

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

A Study on the Properties of $Al_2$ $O_3$ and $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N Coatings Produced by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학 증착법에 의한 $Al_2$ $O_3$ 단층피막과 $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N 이중피막의 제조 및 특성에 관한 연구)

  • 손경석;이승훈;이동각;임주완;이후철;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • $Al_2$$O_3$ coatings were deposited on M2 high speed steels by the plasma enhanced chemical vapor deposition (PECVD) process, using a gas mixture of AlC1$_3$, $H_2$, $CO_2$ and Ar $Al_2$$O_3$ coatings had interference color and showed amorphous phase. $A1_2$X$A1_3$/($Ti_{0.5}$ /$Al_{0.5}$ )N double layer coatings were produced in the sequence of substrate $NH_3$ plasma pretreatment, ($Ti_{0.5}$$Al_{0.5}$)N depoition process, $Al_2$$O_3$ deposition process. $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings showed NaCl structure in ( $Ti_{0.5}$A $l_{0.5}$)N layer and amorphous phase in A1$_2$ $O_3$ layer. It was shown that $Al_2$ $O_3$ columns continuously grew onto ( $Ti_{0.5}$A $l_{0.5}$)N columns. ( $Ti_{0.5}$A $l_{0.5}$)N single coating and $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coating were oxidized at $700^{\circ}C$, 80$0^{\circ}C$, 90$0^{\circ}C$ for 1hr, 3hr in atmosphere. At 80$0^{\circ}C$, single layer coatings were oxidized, which were examined substrate oxide particle. But $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings maintained the asdeposited state. Therefore, $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings have moreexcellent oxidation resistance than ( $Ti_{0.5}$A $l_{0.5}$)N single layer coatings.X> 0.5/)N single layer coatings.s.

  • PDF