• 제목/요약/키워드: Double walled

검색결과 106건 처리시간 0.031초

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces

  • Kumar, B. Ravi
    • Advances in nano research
    • /
    • 제6권2호
    • /
    • pp.135-145
    • /
    • 2018
  • This work represents the study of the vibration response of the double walled carbon nanotubes (DWCNT) for various boundary conditions. The inner and outer carbon nanotubes are modeled as two individual Euler-Bernoulli's elastic beams interacting each other by Van der waals force. Differential transform method (DTM) is used as a numerical method to solve the governing differential equations and associated boundary conditions. The influence of Winkler elastic medium on vibration frequency is also examined and results are interpreted. MATLAB is used as a tool for solving the governing differential equations. The fundamental natural frequencies are validating with those available in literature and observed a good agreement between them.

자긴가공된 두꺼운 실린더의 피로균열 전파수명평가 (Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder)

  • 이송인;김진용;정세희;고승기
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.

셀렌화납 코팅을 통한 이중벽 탄소나노튜브의 전계방출특성 향상 (Enhanced field emission properties of double-walled carbon nanotubes coated with lead selenide nanoparticles)

  • 신동훈;이철진;최영민;김종웅
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.594-598
    • /
    • 2010
  • We studied on the field emission properties of double-walled carbon nanotubes (DWCNTs) coated with lead selenide (PbSe) nanoparticles. PbSe nanoparticles were uniformly attached on the surface of the DWCNTs by a simple chemical process. The PbSe-coated DWCNTs showed highly increased emission current density and enhanced emission stability over 20 h, compared with raw DWCNTs. We consider that the enhanced field emission properties of PbSe-coated DWCNTs were attributed to the increased field enhancement factor and lowered work function of the emitters.

단열을 고려한 초저온 액체질소 저장 탱크의 지지대 용접부 설계 (Weldment Design of Supports for Cryogenic Storage Tank considering Insulation)

  • 최동준;오정택;정재현;조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.131-136
    • /
    • 2008
  • The double-walled steel vessel with powder insulation in the space between the walls is used to minimize heat transfer by radiation and conduction in cryogenic storage tank. The vacuum required the insulation is much less extreme than with high-vacuum or multilayer insulations. The solid supports are used to bear the weight of the inner container. Thermal and structural analysis of the tank have been carried out to study the effect of vacuum and weldment geometry of the internal supports. Heat flux in wall is increased with increasing of thermal conductivity of perlite. Heat flux and stress of support is not affected by weldment geometry.

Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.599-613
    • /
    • 2020
  • In this article, free vibration attributes of double-walled carbon nanotubes based on nonlocal elastic shell model have been investigated. For this purpose, a nonlocal Flügge shell model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. A suitable choice of material properties and nonlocal parameter been focused to analyze the vibration characteristics. The new set of inner and outer tubes radii investigated in detail against aspect ratio and length. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT

  • Hussain, Muzamal;Naeem, Muhammad N.;Asghar, Sehar;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.343-354
    • /
    • 2020
  • In this paper, vibration characteristics of chiral double-walled carbon nanotubes entrenched on Kelvin's model. The Eringen's nonlocal elastic equations are being combined with Kelvin's theory to observe small scale response. A nonlocal model has been formulated to explore the frequency spectrum of chiral double-walled CNTs along with diversity of indices and nonlocal parameter. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail.

Experimental study on vibration serviceability of cold-formed thin-walled steel floor

  • Bin Chen;Liang Cao;Faming Lu;Y. Frank Chen
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.577-589
    • /
    • 2023
  • In this study, on-site testing was carried out to investigate the vibration performance of a cold-formed thin-walled steel floor system. Ambient vibration, walking excitation (single and double persons), and impulsive excitation (heel-drop and jumping) were considered to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes) and vertical acceleration response. Meanwhile, to discuss the influence of cement fiberboard on structural vibration, the primary vibration parameters were compared between the systems with and without the installation of cement fiberboard. Based on the experimental analysis, the cold-formed thin-walled steel floor possesses high frequency (> 10 Hz) and damping (> 2%); the installed cement fiberboard mainly increases the mass of floor system without effectively increasing the floor stiffness and may reduce the effects of primary vibration parameters on acceleration response; and the human-structure interaction should be considered when analyzing the vibration serviceability. The comparison of the experimental results with those in the AISC Design Guide indicates that the cold-formed thin-walled steel floor exhibits acceptable vibration serviceability. A crest factor 𝛽rp (ratio of peak to root-mean-square accelerations) is proposed to determine the root-mean-square acceleration for convenience.

Small scale computational vibration of double-walled CNTs: Estimation of nonlocal shell model

  • Asghar, Sehar;Khadimallah, Mohamed Amine;Naeem, Muhammad N.;Ghamkhar, Madiha;Khedher, Khaled Mohamed;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Ali, Zainab;Iqbal, Zafar;Mahmoud, S.R.;Algarni, Ali;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.345-355
    • /
    • 2020
  • In this paper, vibration characteristics of double-walled carbon nanotubes (CNTs) is studied based upon nonlocal elastic shell theory. The significance of small scale is being perceived by developing nonlocal Love shell model. The wave propagation approach has been utilized to frame the governing equations as eigen value system. The influence of nonlocal parameter subjected to diverse end supports has been overtly analyzed. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.