• Title/Summary/Keyword: Double Hull structure

Search Result 43, Processing Time 0.024 seconds

Study of Structural Safety for Handy Max Double Hull Bulk Carrier (HANDY MAX급 DOUBLE HULL BULK CARRIER의 구조적 안전성 고찰)

  • Moon, Jeong-Woo;Yun, Hye-Lim;Nam, Hyung-Ju;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.81-84
    • /
    • 2013
  • 일반적인 Bulk carrier는 Single deck, Double bottom, Hopper side tank, Top side tank와 함께 Single side skin 또는 Double side skin으로 구성되어 Single hull bulk carrier 또는 Double hull bulk carrier라 불린다. 본 논문의 연구선박인 Double hull bulk carrier는 CSR에서 규정짓고 있는 Double hull bulk carrier의 특징 중 Hopper side tank가 없기에 일반적인 Double hull bulk carrier와는 다른 구조를 가진다. 구조적 특징으로는 Inner bottom과 Inner hull 연결부위에 응력 집중 발생, Side shell의 Shear에 대해 구조적 안전성, Double hull에 대한 CSR for bulk carrier의 Rule적용 여부에 대한 판단 등이 있다. 따라서 본 연구에서는 Double hull bulk carrier의 구조적 특징과 구조해석을 통한 응력 집중 부위의 평가 및 Fatigue analysis을 통한 피로수명을 계산하여 이를 통해 구조의 안전성을 살펴보고자 한다.

  • PDF

A Comparative Study of the Double Hull Structures for the Collision Energy Absorption Systems

  • Lee, J.W.;Kim, J.Y.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.19-28
    • /
    • 2001
  • A comparative study of the new flexible double hull structure is presented as a collision energy absorbing system, which is constructed with mixed stringers comprising slant and straight stringers for the double hull tanker, The dimension and disposition of this mixed stringers are selected to give the maximum absorbing energy. From the viewpoint of collision energy absorbing efficiency, this structural system is compared with three other types of the double hull constructions with trapezoidal stiffener, stringer type and standard type of VLCC, 310K DWT, Based on the constant hull weight, the proposed double hull structure with mixed stringers shows a improved crashworthiness as the results.

  • PDF

Responses of Submerged Double Hull Pontoon/Membrane Breakwater

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.19-28
    • /
    • 2005
  • The present paper outlines the numerical investigation of the incident wave interactions with fully submerged and floating dual double hull pontoon/vertical porous membrane breakwaters. Two dimensional five fluid-domains hydro-elastic formulation was carried out in the context of linear wave body interaction theory to study the wave interaction with the double hull of pontoon-membranes. The submerged circular pontoon is consisted of double hulls, which is filled with water in the void space between the outer structure and inner solid buoyant structure. Hydrodynamic characteristics of the proposed system with dual floating double-hull-pontoons filled with water have been studied numerically for the various incident waves. This study is a beginning stage research for the dual double hull porous pontoons/vertical porous membranes breakwaters which is ideally designed in order to suppress significantly the transmitted and reflected waves simultaneously.

A New Concept of Energy Absorbing System for the Double Hull Tanker

  • Lee, J. W.;Petershagen, H.;Rorup, J.;Kim, J. Y.;Yoon, J. H.
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.12-26
    • /
    • 1999
  • A new concept of collision energy absorbing system for ;he New Oil-tankers with Advanced Double Hull Structure(NOAHS and NOAHS II) are presented through the joint-research pro-gran between Inha and Hamburg-Harburg University. A comparative study on col vision resistance of these proposed side structures with standard double hull structure of 310K DWT class VLCC, is carried out. The fatigue investigation of structural detail parts is also included. It contains a comparative fatigue study based on pertinent regulations of Classification Societies.

  • PDF

Structural Design of Double Hull Tanker in Collision by Rigid Colliding Ship (강체 충돌선의 충돌을 고려한 이중선체 유조선의 구조설계)

  • 이상갑;박수송
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.99-111
    • /
    • 1999
  • The object of this study is to get the superior double hull structure to its crashworthiness against collision comparing absorbed energy capacities of its various types with each other, varying material properties, collision positions and velocities, and structural arrangements such as double hull width, web and stringer spaces, etc. Local absorbed energy capacities, failure behaviors and damage extents of their members are also considered during collision in addition to the estimations of their global ones. This paper describes a series of numerical simulations of collisions between DWT 45,000 oil tanker(struck ship) and DWT 10,500 rigid one(striking ships) using Hydrocode LS/DYNA3D. Collisions are assumed to occur at the middle of struck ship with striking one moving at right angle to its centerline. The following remarks were obtained through this study: More flexible the double hull structure is, much superior its crashworthiness against collision is. The increment of double hull width does not give much influence than other factors do. The exact use of material property such as failure strain is also important on the numerical simulation of collision.

  • PDF

An Experimental Study on the Oil Spillage of Damaged Oil Tanker (유조선의 선체손상 시 기름의 해상유출에 대한 실험적 연구)

  • Kim, Ul-Nyeon;Ha, Woo-Il;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.398-408
    • /
    • 2009
  • Crude oil carriers or product oil carriers are confronted with sea pollution due to hull damage from various accidents. To reduce the oil spillage of tankers, IMO(International Maritime Organization) and OPA 90(Oil Pollution Act 1990) adopted the hull structures of double skin type. In this study, oil spillage test of the double skin tanker with 1/100 scaled model was carried out under damaged condition due to collision and grounding accidents. A new structural type of oil tanker was also tested with pipe and valve system arranged in double side and single bottom hulls. Their results were compared with that of conventional type double hull on the view point of ship safety and oil spillage.

Probabilistic Approach to Predicting Residual Longitudinal Strength of Damaged Double HullVLCC

  • Huynh, Van-Vu;Lee, Seung-Hyun;Cho, Sang-Rai
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • This paper estimates the residual longitudinal strength of a damaged double hull VLCC (Very Large Crude Carrier) under combined vertical and horizontal bending moments using Smith's method. The damage estimated in this study occurred due to collision or grounding accidents. The effects of the randomness of the yield stress, plate thickness, extent of damage, and the combination of these three parameters on the ultimate hull girder strength were investigated. Random variables were generated by a Monte Carlo simulation and applied to the double hull VLCC described by the ISSC (International Ship and Offshore Structures Congress) 2000 report.

A study on hull girder shear strength in bulk carriers for CSR and Harmonized CSR (CSR-BC와 Harmonized CSR-BC의 선체 전단 응력에 대한 비교 고찰)

  • Park, Jong Min;Lee, Kyu Ho;Lee, Sang Bok;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.46-49
    • /
    • 2015
  • Common Structural Rules (CSR) about bulk carriers and double-hull oil tankers of International Association of Classification Societies (IACS) has been applied to ships contracted for construction since April 2006. By unifying each society's rules, the difference of opinion in the between shipyard and ship owners, classification was reduced, and CSR has been evaluated by rules the safety structure more enhanced. However, The CSR about the bulk carriers and double hull oil tankers, important design content standards, such as the local scantling calculation, static/dynamic load case and corrosion margin and etc., are different. Therefore in order to combine the CSR, the Harmonized CSR for bulk carriers and double hull oil tankers (H-CSR) was issued on 1, January, 2014, and will be apply to ships contracted for construction after 1st July 2015. It is necessary to verify the H-CSR to optimize the structural arrangement because effective date is not far off. In this study, we compared the impact by rule change for the hull girder shear strength of bulk carriers between CSR and H-CSR in respect of the yielding and buckling strength.

  • PDF