• Title/Summary/Keyword: Double Heating

Search Result 237, Processing Time 0.023 seconds

Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle (하수열을 이용한 냉난방시스템에 관한 연구)

  • Lee, Yong-Hwa;Shin, Hyun-Joon;Yoon, Hee-Chul;Park, Hyun-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.

A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays (비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로)

  • 오태환;조영재;박희원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper proposes a CMOS readout circuit for uncooled micro-bolometer arrays adopting a four-point step calibration technique. The proposed readout circuit employing an 11b analog-to-digital converter (ADC), a 7b digital-to-analog converter (DAC), and an automatic gain control circuit (AGC) extracts minute infrared (IR) signals from the large output signals of uncooled micro-bolometer arrays including DC bias currents, inter-pixel process variations, and self-heating effects. Die area and Power consumption of the ADC are minimized with merged-capacitor switching (MCS) technique adopted. The current mirror with high linearity is proposed at the output stage of the DAC to calibrate inter-pixel process variations and self-heating effects. The prototype is fabricated on a double-poly double-metal 1.2 um CMOS process and the measured power consumption is 110 ㎽ from a 4.5 V supply. The measured differential nonlinearity (DNL) and integrat nonlinearity (INL) of the 11b ADC show $\pm$0.9 LSB and $\pm$1.8 LSB, while the DNL and INL of the 7b DAC show $\pm$0.1 LSB and $\pm$0.1 LSB.

The Effect of Heat Curing Methods on the Protection against Frost Damage at Early Age of the Concrete Under Extremely Cold Climate

  • Jung, Eun-Bong;Shin, Hyun-Sup;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.513-521
    • /
    • 2013
  • This study aimed to examine whether heat curing methods of concrete subjected to $-10^{\circ}C$ could be effective by varying the combination of heating cable and surface heat insulations. Three different concrete specimens incorporating 30% fly ash with 50% W/B were fabricated to simulate wall, column and slab members with dimensions of $1600{\times}800{\times}200$ mm for slab, $800{\times}600{\times}200$ mm for wall and $800{\times}800{\times}800$ mm for column. For heat curing combinations, Type-1 specimens applied PE film for slab, plywood for wall and column curing. Type-2 specimens applied double layer bubble sheet (2LB) and heating coil for slab, and 50 mm styrofoam for wall and column curing. Type-3 specimen applied 2LB for slab, electrical heating mat for wall and column inside heating enclosure. The test results revealed that the temperature of Type 1 specimen dropped below $0^{\circ}C$ beginning at 48 hours after placement due to its poor heat insulating capability. Type 2 and 3 specimens maintained a temperature of around $5{\sim}10^{\circ}C$ after placement due to favorable heat insulating and thermal resistance.

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Failure Analysis of Stress Reliever in Heat-Transport Pipe of District Heating System

  • Cho, Jeongmin;Chae, Hobyung;Kim, Heesan;Kim, Jung-Gu;Kim, Woo Cheol;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.243-249
    • /
    • 2022
  • The objective of the present study was to perform failure analysis of double-layered bellow (expansion joint), a core part of stress reliever, used to relieve axial stresses induced by thermal expansion of heat-transport pipes in a district heating system. The bellow underwent tensile or compressive stresses due to its structure in terms of position. A leaked position sufferred a fatigue with a tensile component for decades. A cracked bellow contained a higher fraction of martensitic phase because of manufacturing and usage histories, which induced more brittleness on the component. Inclusions in the inner layer of the bellow acted as a site of stress concentration, from which cracks initiated and then propagated along the hoop direction from the inner surface of the inner layer under fatigue loading conditions. As the crack reached critical thickness, the crack propagated to the outer surface at a higher rate, resulting in leakage of the stress reliever.

Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type (열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가)

  • Chun, Tae-Kyu;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2012
  • Recently, even though the researches on renewable energy like geothermal, wind, solar energy have been performed widely, its use-rate in total energy is still low. This study was carried out to investigate the performance of hybrid heating system, which consisted of solar collector of thermosyphon tube type and X-L pipe boiler. Especially, new type of solar collector was tried and compared with double tube type and, futhermore, performance and safety on X-L pipe boiler were investigated. As the results, efficiency of solar collector of thermosyphon tube type was higher 20.7% than that of double tube type, mainly due to its structural characteristics. It was also confirmed that temperature of special heat medium used X-L pipe boiler rose up about 20% rapidly in comparison with that of pure water.

Effects of Covering Materials and Methods on Heat Insulation of a Plastic Greenhouse and Growth and Yield of Tomato (플라스틱하우스의 보온피복 재료 및 방법이 보온력과 토마토의 생육 및 수량에 미치는 영향)

  • Kwon Joon Kook;Lee Jae Han;Kang Nam Jun;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • This experiment was carried out to investigate the effects of different covering materials and methods on heat insulation of a plastic greenhouse, growth and yield of tomato. Night air and soil temperatures in a double-layer greenhouse with external multifold thermal cover (MTC; eight-ounce cassimere+four-fold polyform+double-fold non-woven fabric+single-fold polypropylene covering were about $1^{\circ}C$ lower than in that with internal MTC covering, but about $3^{\circ}C$ higher than in that with an EVA film screen. Tomato yield in the external MTC covering increased by $2\%\;and\;19\%$ as compared to that in the internal MTC covering and the non-covering of MTC, respectively, due to its high light transmission and insulation effect. Night air temperatures in a double-layer greenhouse with external MTC covering and with thermal screen (polyester plus aluminium) were $2.2^{\circ}C\;and\;4.5^{\circ}C$ higher than those in a double-layer greenhouse with an external MTC covering and in a double-layer greenhouse equipped an EVA film screen, respectively. Tomato yield in the treatment with external MTC covering and a thermal screen was $18\%\;and\;37\%$ greater than that in the external MTC covering and in an EVA film screen, respectively. Results indicate that tomato could be grown without heating or with minimal heating in a double-layer greenhouse covered with MTC and a thermal screen during the winter season in sourthern regions of Korea.

Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun;Lim, Hyun-Soon;Jeon, Byung-Kuk;Ko, Jung-Min;Lee, Jun-Young;Ki, Whan-Gun
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.

The Static Collapse Characteristics of CFRP Single and Double Hat Shaped Section Members according to the Interface Number for Lightweight (경량화용 CFRP 단일 모자형 부재와 CFRP 이중 모자형 부재의 계면수 변화에 따른 정적압궤특성)

  • Hwang, Woo-Chae;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.20-25
    • /
    • 2012
  • Currently, the most important purpose in designing automobile is environment-friendly and safety performance aspect. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a wide application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. In this study, experimental investigations are carried out for CFRP single and double hat shaped section member in order to study the effect of various stacking condition. They were cured by heating to the appropriate curing temperature($130^{\circ}C$) by means of a heater at the vacuum bag of the autoclave. The stacking conditions were selected to investigate the effect of the interface numbers. The CFRP single and double hat shaped section members which manufactured from unidirectional prepreg sheets were made of 8ply. The static collapse tests performed and the collapse mode and energy absorption capability were analyzed according to interface number.

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.