• 제목/요약/키워드: Double Cavity

검색결과 137건 처리시간 0.025초

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

식물공장 이중창호의 하절기 열전달 성능 분석 (Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory)

  • 소재현;김우태
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

이중 공동의 고유 주파수 최대/최소화를 위한 위상 최적화 기반 격벽 설계 (Topology-optimization-based Partition Design for Maximizing or Minimizing the Eigenfrequency of a Double Cavity)

  • 이진우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1118-1127
    • /
    • 2008
  • The position and size of holes in the partition of a double cavity are known to strongly affect the eigenfrequency of the longitudinal eigenmodes of the double cavity. To maximize or minimize the eigenfrequency of the hole-partitioned double cavity, two acoustical topology optimization problems are formulated and solved. While two sub-cavities are filled with air, a partition between them is assumed to consist of sub-partitions of variable acoustical properties. One design variable is assigned to each sub-partition, whose material properties are interpolated as those of an intermediate material between air and a rigid body. The penalty parameter of the used interpolation function is adjusted to obtain a distinct air and rigid body distribution at the converged stage in each acoustical topology optimization problem. A special attention is paid to the selection of initial values of design variables to obtain solutions as close to global optimum and symmetric as possible. To show numerical characteristics of these optimization problems, the formulated problems are first solved for the one-dimensional partition design domain and then for the two-dimensional partition design domain.

NOISE REDUCTION OF AN ENCLOSED CAVITY BY MEANS OF AIR-GAP SYSTEMS

  • Kang, S.W.;Lee, J.M.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.209-213
    • /
    • 2004
  • The objective of this paper is to introduce the noise reduction characteristics of a double gap system, which is composed of two air-gaps and two partition sheets. The resonance of acoustic modes of an enclosed cavity can be effectively suppressed by installing the double gap system in the cavity. It is revealed from a simple, one-dimensional model that the double gap system is more effective than the single gap system that consists of one air-gap and one partition sheet, in that the former requires a smaller space than the latter. Finally, these theoretical conclusions are verified by comparison experiments using an actually manufactured enclosed cavity, of which the boundary surfaces are made of thick panels that can be assumed as rigid walls.

차실 소음 저감을 위한 복층 에어갭 공명기가 설치된 음향 공동의 강제 음향 응답 해석 (Forced Acoustic Response Analysis of an Acoustic Cavity with a Double Air-gap Resonator for Reducing Passenger Compartment Noises)

  • 강상욱
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.163-169
    • /
    • 2005
  • A theoretical formulation on the forced acoustic response of an enclosed cavity having a double air-gap resonator on one of boundary panels of the cavity is developed in the paper. The double gap resonator consists of two air-gaps and two partition sheets as in the author's previous papers. This paper reveals that the double gap resonator reduces the level of a target noise peak by splitting the peak as two small peaks, and that it is more effective when it is designed so that the upper gap thickness is larger than the lower gap thickness under the constraint that the entire gap thickness is fixed as a constant value. Finally, verification experiments show that the theoretical formulation and analysis results are valid by comparing theoretical results with experimental ones.

열성능을 고려한 다층형 이중외피의 중공층 높이에 관한 연구 (A Study on the Cavity Height of Muti-Story Double-Skin Facade for better Thermal Performance)

  • 신선준;조재훈;석호태;김광우
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.53-62
    • /
    • 2005
  • In this study, the thermal performance of multi-story double-skin facade(DSF) with variation of cavity height is evaluated to offer useful data in determining cavity height of multi-story DSF. For this, thermal criteria for multi-story DSF is adopted and a DSF model for evaluation of the thermal performance is established. Through the evaluation of CFD simulation, the recommended height of multi-story DSF is 5 stories or less to improve the thermal performance during the intermediate season.

Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner

  • Zhang, Xu;Zhang, Chengping;Min, Bo;Xu, Youjun
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.399-410
    • /
    • 2020
  • Cavities often develop behind the vault during the construction of double-arch tunnels, generally in the form of various defects. The study evaluates the impact of cavities behind the vault on the mechanical and failure behaviors of double-arch tunnels. Cavities of the same sizes are introduced at the vault and the shoulder close to the central wall of double-arch tunnels. Physical model tests are performed to investigate the liner stress variation, the earth pressure distribution and the process of progressive failure. Results reveal that the presence of cavities behind the liner causes the re-distribution of the earth pressure and induces stress concentration near the boundaries of cavities, which results in the bending moments in the liner inside the cavity to reverse sign from compression to tension. The liner near the invert becomes the weak region and stress concentration points are created in the outer fiber of the liner at the bottom of the sidewall and central wall. It is suggested that grouting into the foundation soils and backfilling injection should be carried out to ensure the tunnel safety. Changes in the location of cavities significantly impact the failure pattern of the liner close to the vault, e.g., cracks appear in the outer fiber of the liner inside the cavity when a cavity is located at the shoulder close to the central wall, which is different from the case that the cavity locates at the vault, whereas changes in the location of cavities have a little influence on the liner at the bottom of the double-arch tunnels.

회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구 (Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity)

  • 강신형;이태홍;이진호
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

오피스 건물에 적용된 다층형 이중외피의 풍압과 실내·외 온도차에 의한 환기량 변화 분석 (The Analysis on the Variation of the Ventilation Rates by Wind Pressure and Temperature Difference between Indoor and Outdoor in the Multi-Story Type Double Skin Facade applied to the Office Building)

  • 송치호;김태연;이승복
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.123-131
    • /
    • 2015
  • Purpose : Improvement of indoor thermal comfort and reduction of the energy consumption in building can be obtained by applying a double skin facade system. In order to achieve effectively this purpose, design team would have to perform easy and appropriate performance analysis for making better design decision during the design process. Method : This paper focus on the natural ventilation performance of a multi-story type double skin facade with main causes which are pressure difference according to the wind and temperature difference between indoor and outdoor (Buoyancy Effect). Using this main causes, the natural ventilation ratio of wind effect-to-buoyancy effect in cavity of multi-story type double skin facade were analyzed through the performance analysis results of CFD (Computational Fluid Dynamics) simulation. Result : When the wind velocity was 2m/s, the ventilation rate in the cavity was highest. If wind velocity was slower than 2m/s wind velocity, buoyancy effect has more influence on the ventilation rate in the cavity, and if wind velocity was faster than 2m/s wind velocity, wind effect has more influence on the ventilation rate in the cavity.

PARAMETRIC INVESTIGATIONS ON THE DOUBLE DIFFUSIVE CONVECTION IN TRIANGULAR CAVITY

  • Kwon, SunJoo;Oh, SeYoung;Yun, Jae Heon;Chung, Sei-Young
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.419-432
    • /
    • 2007
  • Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.

  • PDF