• Title/Summary/Keyword: Dormant reliability

Search Result 6, Processing Time 0.025 seconds

A Study on Reliability Prediction of Product with Dormant Phase (휴면기를 거치는 제품의 신뢰도 예측에 관한 연구)

  • Kim, Yon-Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • The purpose of this paper is to examine the effects on reliability of equipment or product which spends a great deal of its time in the dormant condition. Many systems experienced periods of dormancy throughout their life cycle, such as periods of operational storage where the system waits, ready for use. The design of such systems must account for how these period of dormant effects system performance. The methodology for predict and analysis was developed to support the evaluation of dormant modes of operation of systems and subsystems. For proper handling of the dormant environment, issues relating to dormant failures need to be taken into consideration from design stage of the lifecycle. Furthermore, the relevant environmental concerns that need to be taken into consideration depend on the environmental factors associated with each different target environment. This paper will look at dormant reliability, the possible dormant reliability models and the methodology on life cycle reliability which has different dormant phase.

Study of Simulation Method for Certified Missile Rounds Concepts with Constraints (제약사항을 고려한 보증 유도탄 시뮬레이션 기법 연구)

  • Lee, Kye-Shin;Lee, Youn-Ho;Cho, Yong-Seok;Kim, Hyo-Chang;Kim, Sang-Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.127-138
    • /
    • 2011
  • Certified Missile Round Concepts that is one-shot device use the periodic inspection policy to improve the continuously deteriorated reliability. In this paper, we suggest dormant reliability prediction model by simulation with real operational environment. The suggested prediction model is based on optimal inspection period decision model and additionally considers various constraints; moving, inspection or repair service time. The simulation results show the constraints affect dormant reliability and missile availability. Lastly, we suggest building up a depot to resolve the above problems by the suggested simulation model.

Certified Missile Rounds Concepts Using Modeling and Simulation (M&S를 활용한 유도탄 검사주기 및 수량 설정 방안)

  • Kim, Byung-Soo;Lee, Kye-Shin;Kim, Dong-Seok;Moon, Ki-Sung
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.95-105
    • /
    • 2009
  • In this study, we presented the periodic inspection method of the Certified Missile Round Concepts usuing M&S(Modeling and Simulation) techniques. Firstly, We drew up the scenario from the application concepts and the predicted dormant reliability Secondly, we performed the modeling for a simulation program based on the scenario. Lastly we embodied the simulation program. After comparing and examining the difference between the simulation results and the theoretical estimates, we present the best periodic inspection plan for achieving the probability of success.

A Study on the Improvement of Reliability Prediction Model for Guided Missile (유도탄의 신뢰도 예측 모델 개선에 관한 연구)

  • Seo, Yang Woo;Yoon, Jung Hwan;Kim, Hee Wook;Kim, Jung Tae
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • Currently, Storage Reliability is analyzed when predicting the reliability of guided missile. However, Mission Reliability and Logistics Reliability should be analyzed according to the definition of reliability in MIL-STD-785B. Therefore, it is necessary to accurately predict the reliability of guided missile based on the definition of reliability. In this paper, we proposed improved the reliability procedure and model for guided missile based on which the definition of reliability considering the mission profile. The proposed model can calculate the final failure rate by applying the ratio of the dormant and storage according to the mission profile. The proposed model has been confirmed to be more accurate than the existing model compared to the actual failure rate value. The results of this study can be useful for applying the reliability prediction to any guided missile.

A Study on Method for Applying CBM+ in Missile for Effective Health Management (효과적인 건전성 관리를 위한 유도탄 CBM+ 적용 방안 연구)

  • Youn-Ho Lee;Seong-Mok Kim;Ji-Won Kim;Jae-Woo Jung;Jung Won Park;Yong Soo Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.294-303
    • /
    • 2024
  • The objective of condition-based maintenance plus(CBM+) is to improve the availability and maintenance efficiency of missiles, bolstering national defense capabilities. This study proposes an application of CBM+ to enhance the reliability and the safety of missiles, which are the devices typically stored for long durations. CBM+ CBM+ does not only contribute to defense capabilities, but it also aims to reduce maintenance costs. This study focuses particularly on the dormant stage of the missile life-cycle, in which various failure modes and environmental impacts on failure mechanisms are investigated. The effectiveness of maintenance strategies and the implementation of CBM+ is evaluated using simulation data.

Characteristics of Greenup and Senescence for Evapotranspiration in Gyeongan Watershed Using Landsat Imagery (Landsat 인공위성 이미지를 이용한 경안천 유역 증발산의 생장기와 휴면기 분포 특성 분석)

  • Choi, Minha;Hwang, Kyotaek;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.29-36
    • /
    • 2011
  • Evapotranspiration (ET) from the various surfaces needs to be understood because it is a crucial hydrological factor to grasp interaction between the land surface and the atmosphere. A traditional way of estimating it, which is calculating it empirically using lysimeter and pan evaporation observations, has a limitation that the measurements represent only point values. However, these measurements cannot describe ET because it is easily affected by outer circumstances. Thus, remote sensing technology was applied to estimate spatial distribution of ET. In this study, we estimated major components of energy balance method (i.e. net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) and ET as a map using Mapping Evapo-Transpiration with Internalized Calibration (METRIC) satellite-based image processing model. This model was run using Landsat imagery of Gyeongan watershed in Korea on Feb 1, 2003 and Sep 13, 2006. Basic statistical analyses were also conducted. The estimated mean daily ETs had respectively 22% and 11% of errors with pan evaporation data acquired from the Suwon Weather Station. This result represented similar distribution compared with previous studies and confirmed that the METRIC algorithm had high reliability in the watershed. In addition, ET distribution of each land use type was separately examined. As a result, it was identified that vegetation density had dominant impacts on distribution of ET. Seasonally, ET in a growing season represented significantly higher than in a dormant season due to more active transpiration. The ET maps will be useful to analyze how ET behaves along with the circumstantial conditions; land cover classification, vegetation density, elevation, topography.