DOI QR코드

DOI QR Code

A Study on Method for Applying CBM+ in Missile for Effective Health Management

효과적인 건전성 관리를 위한 유도탄 CBM+ 적용 방안 연구

  • Youn-Ho Lee (PGM IPS R&D, LIG Nex1 Co., Ltd.) ;
  • Seong-Mok Kim (Industrial and Systems Engineering, Kyonggi University) ;
  • Ji-Won Kim (PGM IPS R&D, LIG Nex1 Co., Ltd.) ;
  • Jae-Woo Jung (PGM IPS R&D, LIG Nex1 Co., Ltd.) ;
  • Jung Won Park (Industrial and Systems Engineering, Kyonggi University) ;
  • Yong Soo Kim (Industrial and Systems Engineering, Kyonggi University)
  • 이연호 (LIG넥스원(주) PGM IPS연구소) ;
  • 김성목 (경기대학교 산업시스템공학과) ;
  • 김지원 (LIG넥스원(주) PGM IPS연구소) ;
  • 정재우 (LIG넥스원(주) PGM IPS연구소) ;
  • 박정원 (경기대학교 산업시스템공학과) ;
  • 김용수 (경기대학교 산업시스템공학과)
  • Received : 2023.08.31
  • Accepted : 2024.02.05
  • Published : 2024.04.05

Abstract

The objective of condition-based maintenance plus(CBM+) is to improve the availability and maintenance efficiency of missiles, bolstering national defense capabilities. This study proposes an application of CBM+ to enhance the reliability and the safety of missiles, which are the devices typically stored for long durations. CBM+ CBM+ does not only contribute to defense capabilities, but it also aims to reduce maintenance costs. This study focuses particularly on the dormant stage of the missile life-cycle, in which various failure modes and environmental impacts on failure mechanisms are investigated. The effectiveness of maintenance strategies and the implementation of CBM+ is evaluated using simulation data.

Keywords

Acknowledgement

이 논문은 2022년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(KRITCT-22-081, 무기체계 CBM+ 특화연구센터).

References

  1. R. Ahmad and S. Kamaruddin, "An Overview of Time-Based and Condition-based Maintenance in Industrial Application," Computers & Ind. Eng., Vol. 63, No. 1, pp. 135-149, 2012.  https://doi.org/10.1016/j.cie.2012.02.002
  2. B. de Jonge, R. Teunter, and T. Tinga, "The Influence of Practical Factors on the Benefits of Condition-based Maintenance Over Time-Based Maintenance," Rel. Eng. Syst. Saf, Vol. 158, pp. 21-30, 2017.  https://doi.org/10.1016/j.ress.2016.10.002
  3. S. J. Bae, J. H. Tae, C. S. Chung, Y. Cho, H. S. Oh, and S. G. Chae, "A Condition-Based Maintenance Method Through Control Charts Based on the Wavelet Energy Spectrum of Generators in Thermal Power Plants," J. of Appl. Rel., Vol. 22, No. 4, pp. 363-373, 2022. 
  4. O. Serradilla, E. Zugasti, C. Cernuda, A. Aranburu, J. R. de Okariz, and U. Zurutuza, "Interpreting Remaining Useful Life Estimations Combining Explainable Artificial Intelligence and Domain Knowledge in Industrial Machinery," in Proc. IEEE Int. Conf. Fuzzy Syst., pp. 1-8, 2020. 
  5. X. Li, Q. Ding and J. Q. Sun, "Remaining Useful Life Estimation in Prognostics using Deep Convolution Neural Networks," Rel. Eng. Syst. Saf., Vol. 172, pp. 1-11, 2018.  https://doi.org/10.1016/j.ress.2017.11.021
  6. R. Zhao, M. Qian, and L. Zhang, "Study of Key Technology and Architecture of Health Management for Missile Equipment," in Proc. 2nd Int. Conf. Rel. Syst. Eng.(ICRSE), pp. 1-4, 2017. 
  7. S. A. Marotta, A. Kudiya, T. K. Ooi, H. A. Toutanji, and J. A. Gilbert, "Predictive Reliability of Tactical Missiles using Health Monitoring Data and Probabilistic Engineering Analysis," in Proc. of the 1st Int. Forum on Integr. Syst. Health Eng. and Manage., pp. 7-10, 2005. 
  8. L. Jun, M. Ling, Z. Lixin, and W. Chunhui, "A Concept for PHM System for Storage and Life Extension of Tactical Missile," in Proc. Prognostics Syst. Health Manage. Conf.(PHM-Hunan), pp. 689-694, 2014. 
  9. A. J. Kudiya and S. A. Marotta, "Tactical Missile Health Management," Syst. Health Manage.: With Aerosp. Appl., pp. 555-564, 2011. 
  10. W. Pan, T. Li, H. Wan, Y. Chen, and Y. Zhang, "The Effect and Countermeasures on the Missile Equipment in High Temperature and Damp Environment," in Proc. Int. Conf. on Energy, Power and Elect. Eng., 2016. 
  11. D. Julong, "Grey Control System," J. Huazhong Univ. Sci. Technol., Vol. 3, No. 9, pp. 9-18, 1982. 
  12. J. L. Cook, "Applications of Service Life Prediction for US Army Ammunition," Saf. and Rel., Vol. 30, No. 3, pp. 58-75, 2010. 
  13. Y. Lin, D. Quan, P. Jin, and W. Guo, "A Method Study of Missile PHM based on Analytic Hierarchy Process," in Proc. 1st Int. Conf. Rel. Syst. Eng. (ICRSE), pp. 1-6, 2015. 
  14. Y. Liu, T. Liu, R. Lin, H. Wang, and J. Liu, "Missile Health Status Assessment Method based on Hierarchical Model," in Proc. 3rd Int. Conf. on Artif. Intell. and Adv., pp. 3077-3080, 2021. 
  15. X. Shan, W. Zhang, Y. Cao, and X. Li, "Life Prediction Method of Missile based on Environmental Load Spectrum of Shipborne Tilt Launching," J. of Phys: Conf. ser., Vol. 1852, No. 3, p. 032061, 2021. 
  16. R. M. Seman, J. M. Etzl, and A. Purnell, Reliability /Maintainability/Testability Design for Dormancy, RADC-TR-88-110, Rome Air Development Center Air Force Systems Command, 1988. 
  17. Y. Lee, H. Yong, J. Jung, and J. Kim, "Development of Dormant Missile Health Monitoring Methodology based on Environmental Data," J. of Appl. Rel., Vol. 22, No. 3, pp. 219-228, 2022. 
  18. Ammunition ILS practical Guidebook I, Ammunition Support Command, Korea, ch3 - p. 6, 2017. 
  19. O. Hallberg and D. S. Peck, "Recent Humidity Accelerations, a Base for Testing Conditions," Qual. Reliab. Eng., Vol. 7, pp. 169-180, 1991.  https://doi.org/10.1002/qre.4680070308
  20. K. Teng, J. Han, F. Ge, and G. Zhang, "Research on Missile Weapons Health Management and Storage Life Prediction Methods based on PHM Technology," in Proc. Prognostics Syst. Health Manage. Conf.(PHM-Chongqing), pp. 993-997, 2018.