• Title/Summary/Keyword: Doppler tracking

Search Result 101, Processing Time 0.021 seconds

Infulence of doppler effects on the tracking performance of a dely locked loop (도플러 효과에 의한 지연 동기 루프의 추적 성능분석)

  • 임성준;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.857-864
    • /
    • 1998
  • The infuluence of Doppler effects on the tracking performance of a noncoherent second-order delay locked loop (DLL) operating on a data modulated signal is investigated. For the perfoermance analysis we consider the tracking accuracy (steady state error and jitter) of the linear DLL and the reliability of the nonlinear loop. The nonlinear analysis concerning the loop reliability makes use of an asympototic expansion for the MTLL(mean time to lose lock) which has been derived by applying the singular perturbation method. In particular, we give optimal loop parameters and the optimal bandwidth of the bandpass filter in the loop arms to achieve a maximum MTLL. Since Doppler effects can be producesd comparatively in LEO system, we can espect the more reliable DLL loop design. by using the results of the circuit simulation, the delay lock loop is synthesized in FPGA, and verified to get the GPS data from the STR-2770 GPS simulator system. So, the synthesized logic circuit is shown be accurately performed.

  • PDF

Underwater mobile communication scheme based on the direct sequence spread spectrum transmission using Doppler estimation and its sea trial results with the pseudo-moving transmission (도플러 추정을 적용한 직접수열 대역확산 전송 기반 수중 이동통신 방법 및 가상 이동신호를 이용한 해상시험 결과)

  • Kim, Seung-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.16-29
    • /
    • 2022
  • This paper presents a Doppler shift estimation method and signal processing schemes for Direct Sequence Spread Spectrum (DSSS) transmission to overcome the Doppler shift due to the moving of the underwater communication unit. The proposed method estimates a Doppler shift via 2 step procedures using the preamble with the two 64-length Frank sequences which has a good self-correlation characteristic and is insensitive to the Doppler shift. Furthermore, a packet of DSSS underwater mobile communication and a RAKE receiver are designed using the proposed Doppler shift estimation method. Due to the modulation scheme of the designed DSSS underwater mobile communication using Differential-Quadrature Phase Shift Keying (DQPSK) for the data symbol transmission, the RAKE receiver dose not need a phase tracking and easily makes coherent signals among the combining RAKE branches. The designed RAKE receiving scheme including the proposed Doppler shift estimation method successfully decides information data using the DSSS signal transmitted from the pseudo-moving transmitter with velocity upto about 17.5 m/s.

Extraction of Blood Flow of Brachial Artery on Color Doppler Ultrasonography by Using 4-Directional Contour Tracking and K-Means Algorithm (4 방향 윤곽선 추적과 K-Means 알고리즘을 이용한 색조 도플러 초음파 영상에서 상환 동맥의 혈류 영역 추출)

  • Park, Joonsung;Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1411-1416
    • /
    • 2020
  • In this paper, we propose a method of extraction analysis of blood flow area on color doppler ultrasonography by using 4-directional contour tracking and K-Means algorithm. In the proposed method, ROI is extracted and a binarization method with maximum contrast as a threshold is applied to the extracted ROI. 4-directional contour algorithm is applied to extract the trapezoid shaped region which has blood flow area of brachial artery from the binarized ROI. K-Means based quantization is then applied to accurately extract the blood flow area of brachial artery from the trapezoid shaped region. In experiment, the proposed method successfully extracts the target area in 28 out of 30 cases (93.3%) with field expert's verification. And comparison analysis of proposed K-Means based blood flow area extraction on 30 color doppler ultrasonography and brachial artery blood flow ultrasonography provided by a specialist yielded a result of 94.27% accuracy on average.

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

Channel Prediction based Adaptive Channel Tracking cheme in MIMO-OFDM Systems with Null Sub-carriers (Null 부반송파를 갖는 MIMO-OFDM에서 채널 예측 기반적응 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.556-564
    • /
    • 2007
  • This paper proposes an efficient scheme to track a time variant channel induced by multi-path Rayleigh fading in mobile MIMO-OFDM systems with null sub-carriers. The proposed adaptive channel tracking scheme removes in the frequency domain the interfering signals of the other transmit (Tx) antennas by using a predicted channel frequency response before starting the channel estimation. Time domain channel estimation is then performed to reduce the additive white Gaussian noise (AWGN). The simulation results show that the proposed method is better than the conventional channel tracking method [3] in time varying channel environments. At a Doppler frequency of 300 Hz and bit error rates (BER) of 10-3, signal-to-noise power ratio (Eb/N0) gains of about 2.5 dB are achieved relative to the conventional channel tracking method [3]. At a Doppler frequency of 600 Hz, the performance difference between the proposed method and conventional one becomes much larger.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

Carrier Tracking Loop Design Using FLL-assisted PLL Scheme for Galileo L1F Channel (갈릴레오 L1F 채널에서 FLL-assisted PLL 기술을 이용한 반송파 추적 설계)

  • Choi, Seung-Duk;Lee, Sang-Kook;Hawng, In-Kwan;Shin, Cheon-Sig;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1217-1224
    • /
    • 2008
  • The carrier tracking has to be basically completed for accurate positioning of Galileo satellite system. The FLL for tracking frequency errors is robust to dynamic stress causing changes of propagation time but hardly tracks accurate carrier tracking. The PLL for tracking phase errors provides accurate carrier tracking but is sensitive to dynamic stress and its tracking performance is decreased when high dynamics exist. In this paper, we design the carrier tracking loop with the FLL-assisted PLL loop filter and co-operations of FLL and PLL to achieve accurate carrier tracking in high dynamic stress. we prove the performance of designed carrier tracking loop via simulations.

EXTENDED KALMAN FILTERING OF SATELLITE DOPPLER TRACKING DATA AND IT'S APPLICATION TO ORBIT DETERMINATION PROBLEMS (확장칼만필터를 이용한 인공위성 도플러 추적자료의 처리와 궤도 결정)

  • 김동규;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.143-156
    • /
    • 1995
  • Using a directional antenna, the Doppler effect of satellites can be detected and the orbital elements can be obtained by the Extended Kalman Filter with the observed frequency shift data. We obtained the orbital elements of NOAA-11 by the application of the Extended Kalman Filter type algorithm to the Doppler shift data of NOAA-11d and discussed the accuracy and the credibility of this algorithm.

  • PDF

Velocity Vector Imaging (속도 벡터 영상 방법)

  • Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.11-27
    • /
    • 2010
  • Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.

GPS L5 Acquisition Schemes for Rapid Code Phase Search and Fine Doppler Determination (GPS L5 신호에서 신속한 코드위상 재검색 및 정밀 도플러 결정 기법)

  • Joo, In-One;Choi, Seung-Hyun;Kim, Jae-Hyun;Shin, Chun-Sik;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • According to the GPS modernization, L5 is the third civilian GPS signal, broadcasts in a radio band reserved exclusively for aviation safety services. However, as the code length of GPS L5 is ten times longer than that of GPS L1, the acquisition processing time in GPS L5 takes longer than that of L1. This characteristics make the code phase detected initially change and cause the tracking loop to unlock. In order to overcome this problem, this paper proposes L5 acquisition schemes for the rapid code phase re-search and the fine doppler determination. The feasibility of the proposed scheme is demonstrated through the simulation results.

  • PDF