• Title/Summary/Keyword: Doping Ratio

Search Result 223, Processing Time 0.025 seconds

The Effects of PZT Ratio and Sr Doping on the Piezoelectric Properties in PZN-PNN-PZT (PZN-PNN-PZT계 압전 조성에서 PZN 함량과 Sr Doping이 압전 특성에 미치는 영향)

  • Choi, Jeoung Sik;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Lee, Joon Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.19-23
    • /
    • 2018
  • In a Pb-included piezoelectric composition, $Sr_yPb_{1-y}[(Zn_{1/3}Nb_{2/3})_x-(Ni_{1/3}Nb_{2/3})_{0.2}-(Zr_{0.46}Ti_{0.54})_{0.8-x}]O_3$ was selected in order to attain high piezoelectric properties. According to the PZN ratio (x) and the amount of Sr doping (y), the crystal structure, microstructure and piezoelectric properties were measured and evaluated. In the case of Sr 4 mol% doping, the piezoelectric properties were the highest for a PZN ratio of 0.1. In this condition, the grain size was larger and the intensity was higher. With the PZN ratio fixed and varying the Sr doping, the piezoelectric properties increased until 10 mol% doping and then decreased for over 12 mol% doping. In the case of x=0.1 and y=10 mol%, the best piezoelectric properties were obtained, i.e., $d_{33}=660pC/N$ and $k_p=68.5%$, and these values seem to be related to the grain size and crystal structure.

CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.246-249
    • /
    • 2013
  • Graphene was obtained on Cu foil by thermal decomposition method. A gas mixture of $H_2$ and $CH_4$ and an ambient annealing temperature of $1,000^{\circ}C$ were used during the deposition for 30 Min., and for the transfer onto $SiO_2/Si$ and Si substrates. The physical properties of graphene were investigated with regard to the effect ofnitrogen atom doping and the various substrates used. The G/2D ratio decreased when the graphene became monolayer graphene. The graphene grown on $SiO_2/Si$ substrate showed a low intensity of the G/2D ratio, because the polarity of the $SiO_2$ layer improved the quality of graphene. The intensity of the G/2D ratio of graphene doped with nitrogen atoms increased with the doping time. The quality of graphene depended on the concentration of the nitrogen doping and chemical properties of substrates. High-quality monolayer graphene was obtained with a low G/2D ratio. The increase in the intensity of the G/2D ratios corresponded to a blue shift in the 2D peaks.

Doping control of Belt Source Evaporation Techniques for Large Size AMOLED

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.930-932
    • /
    • 2007
  • In order to understand the doping control for the belt source evaporation, the Alq3 and NPB were codeposited on the Ta plate to re-sublimate. The very slow heating $(0.1^{\circ}C/s)$ of the Ta plate shows the separated rate signals of Alq3 and NPB sublimated from the Alq3-mixed NPB organic film on Ta plate. The ratio of the vapor rates of Alq3 and NPB was measured as same as that of each sublimation rates. Therefore, the doping control of the belt source evaporation is of the ratio of the vaporization rates of host and dopants.

  • PDF

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

Effects of metal contacts and doping for high-performance field-effect transistor based on tungsten diselenide (WSe2)

  • Jo, Seo-Hyeon;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.294.1-294.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with two-dimensional layered structure, such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are considered attractive materials for future semiconductor devices due to its relatively superior electrical, optical, and mechanical properties. Their excellent scalability down to a monolayer based on the van der Waals layered structure without surface dangling bonds makes semiconductor devices based on TMD free from short channel effect. In comparison to the widely studied transistor based on MoS2, researchs focusing on WSe2 transistor are still limited. WSe2 is more resistant to oxidation in humid ambient condition and relatively air-stable than sulphides such as MoS2. These properties of WSe2 provide potential to fabricate high-performance filed-effect transistor if outstanding electronic characteristics can be achieved by suitable metal contacts and doping phenomenon. Here, we demonstrate the effect of two different metal contacts (titanium and platinum) in field-effect transistor based on WSe2, which regulate electronic characteristics of device by controlling the effective barreier height of the metal-semiconductor junction. Electronic properties of WSe2 transistor were systematically investigated through monitoring of threshold voltage shift, carrier concentration difference, on-current ratio, and field-effect mobility ratio with two different metal contacts. Additionally, performance of transistor based on WSe2 is further enhanced through reliable and controllable n-type doping method of WSe2 by triphenylphosphine (PPh3), which activates the doping phenomenon by thermal annealing process and adjust the doping level by controlling the doping concentration of PPh3. The doping level is controlled in the non-degenerate regime, where performance parameters of PPh3 doped WSe2 transistor can be optimized.

  • PDF

Study on characteristics of Red OLED doped with rubrene (rubrene을 도핑한 Red OLED 특성 연구)

  • Lee, Jeong-Ho;Jeong, Ji-Hun;Kim, Yeong-Gwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.02a
    • /
    • pp.166-167
    • /
    • 2005
  • The doping technique has been well known as method to get various emission color by choosing appropriate fluorescent dyes as a dopant. Usually, red emission of OLED device based on Alg$_{3}$ doped with DCM and rubrene is fabricated. Result that fabricate OLED device was manufactured by various doping density, we looked for the doping ratio of highest luminescent efficiency.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Tunneling Current of Sub-10 nm Asymmetric Double Gate MOSFET for Channel Doping Concentration (10 nm 이하 비대칭 DGMOSFET의 채널도핑농도에 따른 터널링 전류)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1617-1622
    • /
    • 2015
  • This paper analyzes the ratio of tunneling current for channel doping concentration of sub-10 nm asymmetric double gate(DG) MOSFET. The ratio of tunneling current for off current in subthreshold region increases in the region of channel length of 10 nm below. Even though asymmetric DGMOSFET is developed to reduce short channel effects, the increase of tunneling current in sub-10 nm is inevitable. As the ratio of tunneling current in off current according to channel doping concentration is calculated in this study, the influence of tunneling current to occur in short channel is investigated. To obtain off current to consist of thermionic emission and tunneling current, the analytical potential distribution is obtained using Poisson equation and tunneling current using WKB(Wentzel-Kramers-Brillouin). As a result, tunneling current is greatly changed for channel doping concentration in sub-10 nm asymmetric DGMOSFET, specially with parameters of channel length, channel thickness, and top/bottom gate oxide thickness and voltage.

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma (수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.