• Title/Summary/Keyword: Dopaminergic

Search Result 345, Processing Time 0.021 seconds

Nefazodone and Associated Perceptual Disturbance : A Report of Four Cases (Nefazodons투여 후 지각이상을 보인 환자 4례)

  • Kim, Ji-Yun;Song, Hyoung-Seok;Cho, Bang-Hyun;Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.2
    • /
    • pp.259-263
    • /
    • 1999
  • Nefazodone, a newer antidepressant is a phenylpiperazine derivative that inhibits the reuptake of both norepinephrine and serotonin, and antagonizes $5-HT_{2A}$ and ${\alpha}_1$ adrenergic receptors. Compared with SSRIs, nefazodone caused the fewer activating symptoms, adverse gastrointestinal effects(nausea, diarrhea, anorexia) and adverse effects of sexual function, but is associated with the more dizziness, dry mouth, constipation, visual disturbances and confusion. We report on 4 cases of visual disturbances and hallucinations in patients taking nefazodone. It is not certain what mechanisms mediated these side effects, but three mechanisms are possible. 1) Nefazodone, as a 5-HT2 antagonist, might induce visual disturbances. 2) mCPP, metabolite of nefazodone might contribute to the hallucination through action on 5-HT receptor. 3) Dopaminergic enhancing activity of nefazodone might cause hallucination. These case report raises the possibility that dose-related perceptual disturbances may exist with nefazodone. The fact emphasizes the need to pay close attention to all possible drug interactions, particularly in patients treated with multiple psychoactive agents, older patients, and patients with decreased hepatic function.

  • PDF

Pyridoxine Deficiency on Neurotransmitters in the Developing Rat Brain - Catecholamine Metabolism- (Pyridoxine결핍이 뇌의 신경전달물질에 미치는 영향 - Catecholamine 대사 -)

  • Choi, Hay-Mie;Kang, Soon-Ah
    • Journal of Nutrition and Health
    • /
    • v.17 no.3
    • /
    • pp.199-209
    • /
    • 1984
  • Pregnant rats were fed a pyridoxine deficient diet during the gestation and lactation. DEF I group received the deficient diet from delivery ; DEF II group, from the 15 th day of gestation. Body and brain weights, brain protein, DNA, RNA, plasma GOT and GPT, and catecholamines were measured. Effect of MAO inhibiting drug, pargyline, was determined. Brain protein, DNA, and RNA of offsprings of deficient groups were significantly lower than the control group, but RNA/ DNA, brain weight/DNA, and protein/DNA show that cell number were more affected than cell size by the pyridoxine deficiency during the 3rd week of gestation and lactation. Plasma GOT activities were more significantly different than plasma GPT between the control and deficient group. Brain norepinephrine of offsprings of deficient group were significantly lower than the control, but brain dopamine content was not significantly different from the control. At 2nd and 3rd week, norepinephrine was significantly depressed in deficient groups. Pargyline treatment affected a 1.2 fold increase in catecholamines in 3hr while the control had a 1.5 fold increase. Thus norepinephrine and dopamine synthesis was depressed in the deficient groups. Dopaminergic neurons may be less dependent on pyridoxine level than neurons from norepinephrine. Pyridoxine deficiency in maternal diet is not so critical to brain catecholamines of offspring except to the neonatal rats.

  • PDF

Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L: protection by histidyl dipeptides

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.114-119
    • /
    • 2012
  • Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegeneration. Oxidative modification of neurofilament proteins has been implicated in the pathogenesis of neurodegenerative disorders. In this study, oxidative modification of neurofilament-L (NF-L) by salsolinol and the inhibitory effects of histidyl dipeptides on NF-L modification were investigated. When NF-L was incubated with 0.5 mM salsolinol, the aggregation of protein was increased in a time-dependent manner. We also found that the generation of hydroxyl radicals (${\bullet}OH$) was linear with respect to the concentrations of salsolinol as a function of incubation time. NF-L exposure to salsolinol produced losses of glutamate, lysine and proline residues. These results suggest that the aggregation of NF-L by salsolinol may be due to oxidative damage resulting from free radicals. Carnosine, histidyl dipeptide, is involved in many cellular defense processes, including free radical detoxification. Carnosine, and anserine were shown to significantly prevent salsolinol-mediated NF-L aggregation. Both compounds also inhibited the generation of ${\bullet}OH$ induced by salsolinol. The results indicated that carnosine and related compounds may prevent salsolinol-mediated NF-L modification via free radical scavenging.

Functional Regulation of Dopamine D3 Receptor through Interaction with PICK1

  • Zheng, Mei;Zhang, Xiaohan;Min, Chengchun;Choi, Bo-Gil;Oh, In-Joon;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • PICK1, a PDZ domain-containing protein, is known to increase the reuptake activities of dopamine transporters by increasing their expressions on the cell surface. Here, we report a direct and functional interaction between PICK1 and dopamine $D_3$ receptors ($D_3R$), which act as autoreceptors to negatively regulate dopaminergic neurons. PICK1 colocalized with both dopamine $D_2$ receptor ($D_2R$) and $D_3R$ in clusters but exerted different functional influences on them. The cell surface expression, agonist affinity, endocytosis, and signaling of $D_2R$ were unaffected by the coexpression of PICK1. On the other hand, the surface expression and tolerance of $D_3R$ were inhibited by the coexpression of PICK1. These findings show that PICK1 exerts multiple effects on $D_3R$ functions.

Effects of Gypenosides on Acute Stress in Mice

  • Zhao, Ting Ting;Shin, Keon Sung;Choi, Hyun Sook;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.337-341
    • /
    • 2013
  • The effects of gypenosides (GPS) on electric footshock (EF)-induced acute stress in mice were investigated. Mice were treated orally with GPS (30-400 mg/kg) once a day for 5 days. After 2 days of GPS treatment, mice were exposed to EF stimuli (intensity, 2 mA; interval, 10 s; duration, 3 min) for acute stress for 3 days. Spontaneous locomotor activity was increased by acute EF stress, which was decreased by treatment with GPS (100 and 400 mg/kg). In addition, the increased levels of dopamine and serotonin by acute EF stress in the brain were reduced by treatment with GPS (100 and 400 mg/kg). The serum levels of corticosterone increased by acute EF stress were also reduced by GPS (100 and 400 mg/kg). These results suggest that GPS shows the ameliorating effects on acute EF stress by modulating the activity of dopaminergic and serotonergic neurons, and the serum levels of corticosterone. Clinical trials of GPS need to be conducted further so as to develop promising anti-stress agents.

Differential diagnosis of peripheral vertigo (말초성 현기증의 감별진단)

  • Bae, Chang Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Dizziness can be classified mainly into 4 types: vertigo, disequilibrium, presyncope, and lightheadedness. Among these types, vertigo is a sensation of movement or motion due to various causes. The main causes of peripheral vertigo are benign paroxysmal positional vertigo (BPPV), acute vestibular neuritis (AVN), and Meniere's disease. BPPV is one of the most common causes of peripheral vertigo. It is characterized by brief episodes of mild to intense vertigo, which are triggered by specific changes in the position of the head. BPPV is diagnosed from the characteristic symptoms and by observing the nystagmus such as in the Dix-Hallpike test. BPPV is treated with several canalith repositioning procedures. AVN is the second most common cause of peripheral vertigo. Its key symptom is the acute onset of sustained rotatory vertigo without hearing loss. It is treated with symptomatic therapy with antihistamines, anticholinergic agents, anti-dopaminergic agents, and gamma-aminobutyric acid-enhancing agents that are used for symptoms of acute vertigo. Meniere's disease is characterized by episodic vertigo, fluctuating hearing loss, and tinnitus. It is traditionally relieved with life-style modification, a low-salt diet, and prescription of diuretics. However, diagnosis and treatment of the peripheral vertigo can be difficult without knowledge of BPPV, AVN, and Meniere's disease. This article provides information on the differential diagnosis of peripheral vertigo in BPPV, AVN, and Meniere's disease.

Effects of Chengwhabosimtang on depression, anxiety, TH and c-Fos of the brain in the CMS treated rats (청화보심탕(淸火補心湯)이 우울증(憂鬱症) 막형동물(模型動物)의 절망행동(絶望行動), 불안(不安) 및 뇌(腦)의 TH 와 c-Fos 발현(發展)에 미치는 효과(效果))

  • Cho, Chung-Hoon;Shin, Hyeun-Kyoo;Whang, Wei-Wan
    • Korean Journal of Oriental Medicine
    • /
    • v.9 no.1
    • /
    • pp.157-178
    • /
    • 2003
  • Objective : This study was designed to assess the protective effects of Chengwhabosimtang on the animal model of depression, chronic mild stress(CMS). Method : Male Sprague-Dawley rats Were used for this experiment. The subjects Were divided into 3 groups (1. CMS-drug: Chengwhabosimtang administered during CMS treatment, 2. CMS-vehicle: water administered, 3. normal ). After 4 weeks of CMS treatment they were executed Forced swimming test(FST) and Elevated plus maze. Tyrosine hydroxylase(TH) in ventral tegmental area(VTA) and c-Fos in paraventricular nucleus(PVN) were measured. Result : 1. In FST, CMS-drug group showed significantly decreased immobility behavior. 2. CMS-drug group showed no significantly lower TH level in VTA than CMS-vehicle group. 3. CMS-drug group showed significantly less c-Fos expressed cell bodies in PVN than CMS-vehicle group. 4. In Elevated plus maze, CMS-drug group showed no significantly anxiety. Conclusion : These results suggest that Chengwhabosimtang may have protective antidepressant effects in CMS model rats. And these effects could be explained by the elevated stress-copying behaviors which are related with PVN of hypothalamus and dopaminergic neurons in VTA.

  • PDF

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Inhibitory Effects of Glycine on Morphine-Induced Hyperactivity, Reverse Tolerance and Postsynaptic Dopamine Receptor Supersensitivity in Mice

  • Shin, Kyung-Wook;Hong, Jin-Tae;Yoo, Hwan-Soo;Song, Sukgil;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1074-1078
    • /
    • 2003
  • The effects of glycine on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice was examined. A single administration of morphine (10 mg/kg, s.c.) induced hyperactivity as measured in mice. The morphine-induced hyperactivity was inhibited by pretreatment with glycine (100, 200 and 400 mg/kg, i.p.). In addition, it was found repeated administration of morphine (10 mg/kg, s.c.) to mice daily for 6 days caused an increase in motor activity which could be induced by a subsequent morphine dose, an effect known as reverse tolerance or sensitization. Glycine (100, 200 and 400 rng/kg, i.p.) also inhibited morphine-induced reverse tolerance. Mice that had received 7 daily repeated administrations of morphine also developed postsynaptic dopamine receptor supersensitivity, as shown by enhanced ambulatory activity after administration of apomorphine (2 mg/kg, s.c.). Glycine inhibited the development of postsynaptic dopamine receptor supersensitivity induced by repeated administration of morphine. It is suggested that the inhibitory effects of glycine might be mediated by dopaminergic (DAergic) transmission. Accordingly, the inhibition by glycine of the morphine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity suggests that glycine might be useful for the treatment of morphine addiction.

Renal Action of TNPA, a Dopamine $D_2$Receptor Agonist, in Dog (Dopamine $D_2$Receptor 효능제인 TNPA의 신장작용)

  • 고석태;황명성
    • YAKHAK HOEJI
    • /
    • v.45 no.2
    • /
    • pp.205-213
    • /
    • 2001
  • The dopaminergic receptors were consisted of two distinct subtypes, $D_1$and $D_2$, each having different function. The present study was attempted to investigate the effects of R(-)-2,10,11-trihydroxy-N-n-propylnoraporphine (TNPA), a dopamine $D_2$receptor agonist, on renal function in dog. TNPA (5.0~15.0 $\mu$g/kg), when given into the vein, produced a dose-dependently antidiuresis along with the decrease in osmolar clearance ( $C_{osm}$) and urinary excretion of sodium and potassium ( $E_{Na}$ , and $E_{K}$). It also increased reabsorption rates of sodium and potassium in renal tubules ( $R_{Na}$ , $R_{K}$) without any changes in glomerular filtration rate (GFR), renal plasma flow (RPF) and free water clearance ( $C_{H2o}$). TNPA (0.5~1.5 $\mu$g/kg/min) infused into a renal artery decreased urine flow both in the experimental and the control kidneys. TNPA (1.5~5.0 $\mu$g/kg) administered via the carotid artery also greatly exhibited antidiuresis even at intravenously ineffective doses. Changes of renal function by TNPA given into both the renal artery and the carotid artery were almost the same aspect to those induced by intravenous TNPA. These results obtained from the present study suggest that TNPA produces antidiuresis by increasing the reabsorption rates of electrolytes in renal tubules, mainly distal tubule, through changing of central function.unction.

  • PDF