Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.2.114

Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L: protection by histidyl dipeptides  

Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University)
Publication Information
BMB Reports / v.45, no.2, 2012 , pp. 114-119 More about this Journal
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegeneration. Oxidative modification of neurofilament proteins has been implicated in the pathogenesis of neurodegenerative disorders. In this study, oxidative modification of neurofilament-L (NF-L) by salsolinol and the inhibitory effects of histidyl dipeptides on NF-L modification were investigated. When NF-L was incubated with 0.5 mM salsolinol, the aggregation of protein was increased in a time-dependent manner. We also found that the generation of hydroxyl radicals (${\bullet}OH$) was linear with respect to the concentrations of salsolinol as a function of incubation time. NF-L exposure to salsolinol produced losses of glutamate, lysine and proline residues. These results suggest that the aggregation of NF-L by salsolinol may be due to oxidative damage resulting from free radicals. Carnosine, histidyl dipeptide, is involved in many cellular defense processes, including free radical detoxification. Carnosine, and anserine were shown to significantly prevent salsolinol-mediated NF-L aggregation. Both compounds also inhibited the generation of ${\bullet}OH$ induced by salsolinol. The results indicated that carnosine and related compounds may prevent salsolinol-mediated NF-L modification via free radical scavenging.
Keywords
Carnosine; Free radicals; Neurofilament-L; Salsolinol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Tabakman, R., Lazarovici, P. and Kohen, R. (2002) Neuroprotective effects of carnosine and homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J. Neurosci. Res. 68, 463-469.   DOI   ScienceOn
2 Aldini, G, Carini, M., Beretta, G., Bradamante, S. and Facino, R. M. (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem. Biophys. Res. Commun. 298, 699-706.   DOI   ScienceOn
3 Kim, N. H. and Kang, J. H. (2003) Oxidative modification of neurofilament-L by copper-catalyzed reaction. J. Biochem. Mol. Biol. 36, 488-492.   DOI   ScienceOn
4 Smith, M. A., Rudnicka-Nawrot, M., Richey, P. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, L. M. and Perry, G. (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer's disease. J. Neurochem. 64, 2660-2666.   DOI
5 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.   DOI   ScienceOn
6 Kim, N. H. and Kang, J. H. (2006) Oxidative damage of DNA induced by the cytochrome c and hydrogen peroxide system. J. Biochem. Mol. Biol. 39, 452-456.   DOI   ScienceOn
7 Hugli, T. E. and Moore, S. (1972) Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates. J. Biol. Chem. 247, 2828-2834.
8 Brownlees, J., Ackerley, S., Grierson, A. J., Jacobsen, N. J., Shea, K., Anderton, B. H., Leigh, P. N., Shaw, C. E. and Miller, C. C. (2002) Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum. Mol. Genet. 11, 2837-2844.   DOI   ScienceOn
9 Perez-Olle, R., Jones, S. T. and Liem, R. K. (2004) Phenotypic analysis of neurofilament light gene mutations linked to Charcot-Marie-Tooth disease in cell culture models. Hum. Mol. Genet. 13, 2207-2220.   DOI   ScienceOn
10 Zhai, J., Lin, H., Julien, J.-P. and Schlaepfer, W. W. (2007) Disruption of neurofilament net work with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth diseaselinked mutations in NFL and HSPB1. Hum. Mol. Genet. 16, 3103-3116.   DOI   ScienceOn
11 Sasaki, T., Gotow, T., Shiozaki, M., Sakaue, F., Saito, T., Julien, J., Uchiyama, Y. and Isanaga, S. (2006) Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum. Mol. Gent. 15, 943-952.   DOI   ScienceOn
12 Boldyrev, A. A., Dupin, A. M., Pindel, E. V. and Severin, S. E. (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89, 245-250.
13 Auroma, O. I., Laughton, M. J. and Halliwell, B. (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264, 863-869.   DOI
14 Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88, 245-256.   DOI   ScienceOn
15 Decker, E. A., Crum, A. D. and Calvert, J. T. (1992) Differences in the Antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40, 756-759.   DOI
16 Rajanikant, G. K., Zemke, D., Senut, M. C., Frenkel, M. B., Chen, A. F., Gupta, R. and Makid, A. (2007) Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38, 3023-3031.   DOI   ScienceOn
17 Rahner, N., Holzmann, C., Kruger, R., Schols, L., Berger, K. and Riess, O. (2002) Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease. Brain Res. 951, 82-86.   DOI   ScienceOn
18 Kim, H. J., Yoon, H. R., Washington, S., Chang, I. I. Oh, Y. J. and Surh, Y. J. (1997) DNA strand scission and PC12 cell death induced by salsolinol and copper. Neurosci. Lett. 238, 95-98.   DOI   ScienceOn
19 Surh, Y. J., Jung, Y. J., Jang, J. H., Lee, J. S. and Yoon, H. R. (2002) Iron enhancement of oxidative DNA damage and neuronal cell death induced by salsolinol. J. Toxicol Environ. Health A. 65, 473-488.   DOI   ScienceOn
20 Jung, Y. and Surh, Y. J. (2001) Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic. Biol. Med. 30, 1407-1417.   DOI   ScienceOn
21 Halliwell, B. and Gutteridge, J. M. (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347-352.   DOI   ScienceOn
22 Refsgaardm, H. H., Tsai, L. and Stadman, E. R. (2000) Modification of proteins by polyunsaturated fatty acid peroxidation products. Proc. Natl. Acad. Sci. U.S.A. 97, 611-616.   DOI   ScienceOn
23 Ching, G. Y. and Liem, R. K. (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell. Biol. 122, 1323-1335.   DOI   ScienceOn
24 Lee, M. K., Xu, Z., Wong, P. C. and Cleveland, D. W. (1993) Neurofilaments are obligate heteropolymers in vivo. J. Cell. Biol. 122, 1337-1350.   DOI   ScienceOn
25 Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U. and Weber, K. (1983) Neurofilament architecture combine structural principles of intermediate filaments with carboxyl-terminal extensions increasing in size between triplet proteins. EMBO J. 2, 1295-1302.
26 Reilly, M. M. (2000) Classification of the hereditary motor and sensory neuropathies. Curr. Opin. Neurol. 13, 561-564.   DOI   ScienceOn
27 Nixon, R. A. and Shea, T. B. (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell. Motil. Cytoskeleton. 22, 81-91.   DOI   ScienceOn
28 Collard, J. F., Cote, F. and Jullien, J. P. (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61-64.   DOI   ScienceOn
29 Perrot, R., Berges, R., Bocquet, A. and Eyer, J. (2008) Review of the multiple aspects of neurofilament functions and their possible contribution to neurodegeneration. Mol. Neurobiol. 38, 27-65.   DOI   ScienceOn
30 Shepherd, C. E., McCann, H., Thiel, E. and Halliday, G. M. (2002) Neurofilament-immunoreactive neurons in Alzheimer's disease and dementia with Lewy bodies. Neurobiol. Dis. 9, 249-257.   DOI   ScienceOn
31 Riess, O., Kuhn, W. and Kruger, R. (2000) Genetic influence on the development of Parkinson's disease. J. Neurol. 247, II69-II74.   DOI   ScienceOn
32 Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames, B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179.   DOI   ScienceOn
33 Gille, J. J., Pasman, P., van Berkel, C. G. and Joenje, H. (1991) Effect of antioxidants on hyperoxia-induced chromosomal breakage in Chinese hamster ovary cells: protection by carnosine. Mutagenesis 6, 313-318.   DOI   ScienceOn
34 Dobrota, D., Fedorova, T., Stvolinsky, S., Babusikova, E., Likaveanova, K., Drgova, A., Strapkova, A. and Boldyrev, A. (2005) Carnosine protects the brain of rats and Mongoliangerbils against ischemic injury: after-stroke-effect. Neurochem. Res. 30, 1283-1288.   DOI   ScienceOn
35 Ozel Turkcu, U., Bilgihan, A., Biberoglu, G. and Mertoglu Caglar, O. (2010) Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress. Mol. Cell. Biochem. 339, 55-61.   DOI
36 Stvolinsky, S., Kukley, M., Dobrota, D., Mezesova, V., Boldyrev, V. and Boldyrev, A. (2000) Carnosine protects rats under global ischemia. Brain Res. Bull. 53, 445-448.   DOI   ScienceOn
37 Maruyama, W., Abe, T., Tohgi, H. and Naoi, M. (1999) An endogenous MPTP-like dopaminergic neurotoxin, N-methyl( R)salsolinol, in the cerebrospinal fluid decreases with progression of Parkinson's disease. Neurosci. Lett. 262, 13-16.   DOI   ScienceOn
38 Naoi, M., Maruyama, W. and Nagy, G. M. (2004) Dopaminederived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 25, 193-204.   DOI   ScienceOn
39 Yi, S., Akao, Y., Maruyama, W., Chen, K., Siih, J. and Naoi, M. (2006) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J. Neurochem. 96, 541-549.   DOI   ScienceOn
40 Gerlach, M., Koutsilieri, E. and Riederer, P. (1998) N-methyl-(R)-salsolinol and its relevance to Parkinson's disease. Lancet 351, 850-851.   DOI   ScienceOn
41 Naoi, M., Maruyama, W., Akao, Y. and Yi, H. (2002) Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson's disease. Neurotoxicol. Teratol. 24, 579-591.   DOI   ScienceOn
42 Deisenhammer, F., Egg, R., Giovannoni, G., Hemmer, B., Petzold, A., Sellebbjerg, F., Teunissen, C. and Tumani, H. (2009) EFNS guidelines on disease-specific CSF investigation. Eur. J. Neurol. 16, 760-770.   DOI   ScienceOn
43 Petzold, A., Brassat, D., Mas, P., Rejdak, K., Keir, G., Giovannoni, G. and Thompson, E. J. (2004) Treatment response in relation to inflammatory and axonal surrogate markers in multiple sclerosis. Mult. Scler. 10, 281-283.   DOI   ScienceOn
44 Teunissen, C. E., Iacobaeus, E., Khademi, M., Brundin, L., Norgren, N., Koel-Simmelink, M. J., Schepens, M., Bouwman, F., Twaalfhoven, H. A., Blom, H. J., Jakobs, C. and Dijkstra, C. D. (2009) Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72, 1322-1329.   DOI   ScienceOn
45 Nixon, R. A. and Lewis, S. E. (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J. Biol. Chem. 26, 16298-16301.