• 제목/요약/키워드: Dopamine D1-like Receptors

검색결과 6건 처리시간 0.02초

Dopamine Receptor Interacting Proteins (DRIPs) of Dopamine D1-like Receptors in the Central Nervous System

  • Wang, Min;Lee, Frank J.S.;Liu, Fang
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.149-157
    • /
    • 2008
  • Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.

Dopamine Receptor Gene (DRD1-DRD5) Expression Changes as Stress Factors Associated with Breast Cancer

  • Pornour, Majid;Ahangari, Ghasem;Hejazi, Seyed Hesam;Ahmadkhaniha, Hamid Reza;Akbari, Mohamad Esmail
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10339-10343
    • /
    • 2015
  • Breast cancer is the most common cancer among females worldwide and a most prevalent malignancy in Iranian women. Chronic stress may make an important contribution to cancer, especially in the breast. Numerous studies showed roles of neurotransmitters in the occurrence and progression of cancers which are mediated by their various types of receptors. This study was conducted to evaluate alterations in the expression profile of dopamine receptor genes in peripheral blood mononuclear cells (PBMC) as stress factors in breast cancer patients and the human breast cancer cell line (MCF-7). Peripheral blood samples were obtained from 30 patients and 30 healthy individuals. Total mRNA was extracted from PBMC and MCF-7 cells and RT-PCR was performed to confirm the presence of five dopamine receptors (DRD1-DRD5). Expression changes of dopamine receptor genes were evaluated by real time PCR. We observed that DRD2-DRD4 in PBMCs of breast cancer patients were increased compared to healthy individuals. In addition, all dopamine receptor subtypes but DRD1 were expressed in MCF-7 cells. Therefore, alterations of these receptors as stress factors should be assessed for selecting appropriate drugs such as D2-like agonists for treatment of breast cancer after performing complimentary tests. Determining the expression profile of dopamine receptor genes thus seems promising.

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Hwang, Ji-Young;Ma, Shi-Xun;Seo, Jee-Yeon;Ko, Yong-Hyun;Kim, Hyoung-Chun;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.115-122
    • /
    • 2016
  • Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Regulation of Phosphorylated cAMP Response Element-Binding Protein, Fos-Related Antigen and FosB Expression by Dopamine Agonists in Rat Striatum

  • Choe, Eun-Sang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.299-305
    • /
    • 2001
  • Activation of D1-like dopamine receptors by psychostimulants, such as amphetamine, upregulates the expression of immediate early gene and opioid peptide gene in the striatum. The genomic changes are regulated by phosphorylated transcription factors via complicated intracellular events. To evaluate temporal expression of the transcription factors by dopaminergic stimulation, the D1-like dopamine agonist, amphetamine or SKF82958, was systematically delivered. As intracellular markers in response to the agonist, phosphorylated cAMP response element-binding protein (pCREB), Fos-related antigens (FRA) and FosB immunoreactivity (IR) was compared at 20 and 120 min time points in the selected areas of the striatum. Semi-quantitative immunocytochemistry showed that amphetamine (5 mg/kg, i.p.) significantly increased pCREB-IR at 20 min, sustained up to 60 min and decreased at 120 min after the infusion. Like amphetamine, the full D1 agonist, SKF82958 (0.5 mg/kg, s.c.), also increased pCREB-IR at 20 min, but not at 120 min after the infusion in the dorsal striatum (caudoputaman, CPu) and shell of ventral striatum (nucleus accumbens, NAc). In contrast, FRA- and FosB-IR induced by SKF82958 was significantly increased at 120 min, but not at 20 min after the administration. These data indicate that SKF82958 mimics induction of CREB phosphorylation by amphetamine and differentially regulates temporal induction of pCREB, and FRA and FosB expression in the striatum.

  • PDF

저용량의 Haloperidol투여에 의해 유발된 백서 뇌내 Dopamine $D_2$양 수용체증식 (Proliferation of Dopamine $D_2$-Like Receptors after Treatment with Low Dose Haloperidol in Rat Brain)

  • 김황진;한규희
    • 생물정신의학
    • /
    • 제3권2호
    • /
    • pp.240-244
    • /
    • 1996
  • 흰쥐에 항정신병약물인 haloperidol을 장기간 투여한 뒤 줄무늬체와 후결절 조직에서의 DA $D_2$양 수용체의 변동에 대해 조사하였다. 약물투여군 4군에게 haloperidol을 각기 0.05, 0.15, 0.5, 1.5mg/kg/day이 되게끔 4주간 투여하였다. DA수용체의 변동은 [$^3H$]spiperone을 이용한 결합반응법을 통해 알아 보았다. 정상대조군에 비해 4주 동안 haloperidol을 투여받은 군 모두에서 줄무늬체에서의 DA 수용체의 최대 결합치가 증가한 것으로 나타났다. 기존의 연구에서 사용한 용량보다 대단히 낮은 0.05mg/kg/day을 투여받은 군 역시 유의한 증가를 보여 낮은 용량의 haloperidol이 DA계에 영향을 미치는 것을 알 수 있었다. 후결절조직의 최대결합치는 haloperidol투여군 모두에서 증가한 경향을 볼 수 있었으나 정상대조군에 비해 1.5mg/kg/day투여군에서 유의한 증가를 볼 수 있었다. 본 실혐의 결과로 미루어 낮은 용량의 haloperidol을 장기간 투여했을 때 뇌내 DA계에 수용체증식이 나타나며 항정신병 효과의 발현과도 관련성이 시사된다. 이러한 결과는 최근 거론되고 있는 항정신병약물의 저용량투여를 간접적으로 지지하는 것으로 생각되며 DA계의 연동을 알리는 다른 생물학적 지표와의 관련성을 살피면 흥미로운 결과를 얻을 것으로 기대된다.

  • PDF

소아청소년의 게임장애와 중독 (Gaming Disorder and Addiction in Children and Adolescents)

  • 이주엽
    • 대한융합한의학회지
    • /
    • 제5권1호
    • /
    • pp.25-44
    • /
    • 2023
  • Objectives: Gaming disorder has been viewed as a disease in the DSM-5 and ICD-11. Its essential symptoms are loss of control over gaming, gaming becoming a markedly prioritized activity over other activities of daily living, and continued and excessive use of gaming despite negative problems occurring. Methods: Children and adolescents are especially vulnerable to gaming disorder because the striatal pathways related to reward develop earlier than the control regions of the prefrontal cortex. It is also associated with decreased dopamine D2 receptors. Addiction is related to 'want' and is explained by incentive-sensitization. In addition, allostasis, in which homeostasis is continuously achieved at a new target value, is also related to gaming disorder. In addition, personality causes, unchangeable factors, and external factors can influence on the onset of gaming disorder. Results: Prevention is the best solution for gaming disorder, and the role of parents is important. For gaming disorder, bupropion is used, cognitive-behavioral therapy and family-based therapy are also beneficial. Herbal medicine treatment such as Antler velvet and ginseng can be effective. Electroacupuncture and acupuncture using PC6, SP6, and LR3 has a correlation with relieving Internet craving. Ear-acupuncture was also effective in treating addiction. Conclusion: Psychologically, 'want' is an intense longing for reward and motivation, and is related to addiction. This 'want' may rather be related to avoidance, and game addiction in children and adolescents may be due to wanting to escape from academic stress or avoidance of comparison. Therefore, the importance of 'like', which gives pleasure in itself, increases. It can also be explained with Sasang Constitutional Medicine.

  • PDF