• Title/Summary/Keyword: Dominion

Search Result 53, Processing Time 0.031 seconds

Blind Drift Calibration using Deep Learning Approach to Conventional Sensors on Structural Model

  • Kutchi, Jacob;Robbins, Kendall;De Leon, David;Seek, Michael;Jung, Younghan;Qian, Lei;Mu, Richard;Hong, Liang;Li, Yaohang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.814-822
    • /
    • 2022
  • The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.

  • PDF

EPIMORPHISMS, DOMINIONS FOR GAMMA SEMIGROUPS AND PARTIALLY ORDERED GAMMA SEMIGROUPS

  • PHOOL MIYAN;SELESHI DEMIE;GEZEHEGN TEREFE
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.707-722
    • /
    • 2023
  • The purpose of this paper is to obtain the commutativity of a gamma dominion for a commutative gamma semigroup by using Isbell zigzag theorem for gamma semigroup and we prove some gamma semigroup identities are preserved under epimorphism. Moreover, we extend epimorphism, dominion and Isbell zigzag theorem for partially ordered semigroup to partially ordered gamma semigroup.

FORMATION OF THE MILKY WAY

  • HESSER J. E.;STETSON P. B.;HARRISM W. E.;BOLTE M.;SMECKER-HANE T. A.;VANDENBERG D. A.;BELL R. A.;BOND H. E.;BERGH S. VAN DEN;MCCLURE R. D.;FAHLMAN G. G.;RICHER H. B.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.111-118
    • /
    • 1996
  • We review observational evidence bearing on the formation of a prototypical large spiral galaxy, the Milky Way. New ground- and space-based studies of globular star clusters and dwarf spheroidal galaxies provide a wealth of information to constrain theories of galaxy formation. It appears likely that the Milky Way formed by an combination of rapid, dissipative collapse and mergers, but the relative contributions of these two mechanisms remain controversial. New evidence, however, indicates that initial star and star cluster formation occurred simultaneously over a volume that presently extends to twice the distance of the Magellanic Clouds.

  • PDF

Harvesting energy from acoustic vibrations of conventional and ultrasonic whistles

  • Hattery, Rebecca;Bilgen, Onur
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.615-624
    • /
    • 2017
  • This paper experimentally investigates the feasibility of harvesting vibration energy from whistles using piezoelectric materials. The end goal of this research is to generate sufficient power from the whistle to power a small radio transmitter to relay a basic signal - for example, a distress call. First, the paper discusses the current literature in energy harvesting from acoustic resonance. Next, the concept of an active whistle is presented. Next, results from energy harvesting experiments conducted on conventional and ultrasonic whistles undergoing human-actuation and actuation by a pressure-regulated air supply are presented. The maximum power density of the conventional whistle actuated by a human at 100 dB sound pressure level is $98.1{\mu}W/cm^3$.