• Title/Summary/Keyword: Domestic Wastewater

Search Result 321, Processing Time 0.021 seconds

Microbial Structure and Community of RBC Biofilm Removing Nitrate and Phosphorus from Domestic Wastewater

  • Lee, Han-Woong;Choi, Eui-So;Yun, Zu-Whan;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1459-1469
    • /
    • 2008
  • Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100${\mu}m$. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was $\beta$- and $\gamma$-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250${\mu}m$. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250${\mu}m$, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250${\mu}m$. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate removal by an RBC system.

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

Management of Water Quality by the Point Source in Mokpo Inner Bay (점 오염원 조사를 통한 목포 내항의 수질관리)

  • Kim, Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.273-283
    • /
    • 2006
  • The results of COD concentration on August of 2004 were 6.80 ppm in North Mokpo Inner Bay, 4.42 ppm un front of YongSang Bank and 4.60 ppm in front of ShinAn Beach Hotel which is over III level Marine Environmental Standard. The others researched five stations sea water quality of Mokpo inner bay are reached II-III level. The concentration of total nitrogen range from 1.23 ppm to 3.56 ppm and total phosphorous concentration was range from 0.07 ppm to 0.12 ppm which are to be II-III level. This results show that the Mokpo inner bay is unsuitable for aquaculture and for use of marine resort, it can be only avaliable for industrial and harbour port use. In this study, we researched 12 point source flow into Mokpo Inner bay. The rate from YoungSang river in total inflow of TN was up to 70-93 % and rate of TP was up to 31-91 % respectively. In this results, we have to control the discharge from YoungSang river first of all then control the discharge from North Harbour domestic wastewater treatment, InAm river and NamHae domestic wastewater treatment in order to improve the water quality of Mokpo Inner bay.

  • PDF

Occurrence of EDC/PPCPs in Influent and Effluent of a Wastewater Treatment Plant (하수처리장 유입.유출수 내 EDC/PPCPs의 발생 특성)

  • Lee, Min-Ju;Ryu, Jae-Na;Oh, Je-Ill;Kim, Hyun-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.783-792
    • /
    • 2009
  • This study investigated 31 selected EDCs(Endocrine Disrupting Compounds) and PPCPs(Pharmaceutical and Personal Care Products) in the influent and effluent of a wastewater treatment plant(WWTP) nearby Seoul metropolitan area. The chemical compounds of EDC/PPCPs detected from the plant influent sample include stimulant, X-ray contrast media and fire retardant. The total amount of each compound class were 59.67%, 20.20% and 9.00% respectively. However, in the effluent sample, the major micropolutants detected were oral beta-blocker(30.54%), fire retardant(20.49%), X-ray contrast media(18.17%). The EDC/PPCPs occurrence levels of this study were somewhat lower than previous domestic studies'. When compared to those of overseas, the values were even lower. Some pharmaceutical compound levels particularly measured in European studies were even several thousand times high. This study then compared PECs(Predicted Environmental Concentration) and MECs(Measured Environmental Concentration) of 9 selected pharmaceuticals compounds. The calculated PECs were substantially different with the MECs, while the occurrence order between the PECs and MECs in terms of concentrations of the compounds were similar.

Environmental Health Strategies in Korea (우리 나라의 환경정책 방향)

  • 조병극
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • Since 1960's along with industrialization and urbanization, economic growth has been . achieved, however, at the same time, environmental condition has been seriously deteriorated. . Currently, volume of wastewater has been increasing at annual rate of 7% in sewage and 20% in industrial wastewater. However, the nation's sewage treatment serves only 33% of the municipal wastewater as of 1991. Major portion of air pollutants comes from combustion of oil and coal which comprise 81% of total energy use and emission gases from motor vehicles increasing at an accelerated rate. It is known that Korea generates the highest amount of waste per capta. Nevertheless, it is not sufficient to reduce the volume of waste by means of resources recovery and recycling. Recognizing the importance of global environmental problems such as ozone layer depletion, global warming and acid rain, international society has been making various efforts since the 1972 Stockholm conference. In particular, it is expected that the Rio conference which has adopted the Rio declaration and Agenda 21 will form a crucial turning point of the emerging new world order after the Cold War confrontation. To cope with such issues as domestic pollution and global environmental problems, the fundamental national policy aims at harmonizing "environmental protection and sustainable development". The Ministry of Environment has recently set up a mid-term comprehensive plan which includes annual targets for environmental protection. According to the government plan, gradual improvement of various environmental conditions and specific measures to achieve them is planned in time frame. Additional sewage treatment plants will be constructed in urban areas with the target to treat 65% of the nation's municipal sewage by 1996. Supply of clean fuels such as LNG will also be expanded starting from large cities as a cleaner substitute energy for coal and oil. In parallel with expansion of LNG, emphasis will be placed on installation of stack monitoring system. Due to the relatively limited land, government's basic policy for solid waste treatment is to develop large scale landfill facilities rather than small sized ones. Thirty three regional areas have been designated for the purpose of waste management. For each of these regions, big scale landfill site is going to be developed. To increase the rate of waste recycling the government is planning to reinforce separate collection system and to provide industries with economic incentives. As a part of meeting the changing situation on global environmental problems after UNCED, and accommodation regulatory measures stipulated in the global environmental conventions and protocols, national policy will try to alter industrial and economic structure so as to mitigate the increasing trends of energy consumption, by encouraging energy conservation and efficiency. In this regard, more attention will be given to the policy on the development of the cleaner technology. Ultimately, these policies and programs will contribute greatly to improving the current state of national public health.

  • PDF

Anaerobic digestion for food wastewater using HADS Pilot Plant and analysis of microbial community in the digester (HADS Pilot Plant를 이용한 음폐수의 혐기성 소화 및 미생물 군집 변화 분석)

  • Ju, Dong-Hun;Lee, Jung-Min;Park, Seong-Bum;Sung, Hyun-Je;Bae, Jae-Sang;Sang, Byoung-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • We(Hansol EME Co. Ltd.) proceeded anaerobic digestion test for domestic food wastewater applying to two operating method for increasing of OLR. The methods are as follows. One was the rapidity operating method which was increasing the OLR continuously and rapidly and the other was the terraced operating method which was increasing the OLR having adaptation period for each step. As a result of this tests, the ratio of VFA/Alkalinity of the process was very unstable under the rapidity operating method then the volume of produced biogas was dramatically decreased. However the process was shown stable performance under the terraced operating method maintaining the ratio of VFA/Alkalinity less than 0.4. Also, the process was performing the biogas recovery of $0.8Nm^3/kgVS_{rem}/d$ and the VS removal ratio of 85%. T-RFLP analysis about the community of bacteria and methanogen is also conducted to check the change of the microbial community according to the methods of OLR increasing operation. The microbial community was changed by the methods of OLR increasing operation according to the result of T-RFLP analysis. Although the anaerobic digestion test was executed by same pilot plant, the reactivity and the tolerance of microbial community for surrounding environment could be considerably changed by the operating method for the process.

Nitrogen Removal Characteristics in DynaFlow Biofilter System Using Sewage Wastewater of Low C/N Ratio (낮은 C/N비에서 운영되는 유로변경식 생물여과 공정의 질소 제거 특성)

  • Kim, Jin-Sik;Kim, Kyu-Ri;Kang, Han-Sol;Won, In-Seop;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.189-194
    • /
    • 2012
  • In this study, a 3-stage biological aerated filter (BAF) system was proposed to enhance nitrogen removal in the treatment of low carbon to nitrogen ratio (C/N ratio) municipal wastewater. Laboratory experiments were conducted to evaluate the effects of dynamic-flow at the HRT of 6 h. Results of the long-term operation of 3-stage BAF systems showed that the dynamic-flow enabled the total nitrogen removal (T-N) removal efficiency of the system to be about 7 % higher than that of non-dynamic-flow system in treating domestic wastewater due to the more efficient use of organic substrates. The overall $NH_4$-N removal performance was stable during the operational period due to the unique system configuration where independent nitrification occurred. It was concluded that the 3-stage BAF system proposed in this study provided excellent performance in the removal of nitrogen by employing dynamic-flow and three columns functioning as sorption, denitrification and nitrification, respectively.

Occurrence of Residual Pharmaceuticals and Fate, Residue and Toxic Effect in Drinking Water Resources (상수원에서의 잔류 의약물질 검출, 거동, 분포 현황 및 독성)

  • Son, Hee-Jong;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.453-479
    • /
    • 2011
  • Residual pharmaceutical compounds have been recognized as emerging environmental pollutants and are widely distributed all over the world. These compounds cause bioaccumulation and biomagnification during present for a long time in the environment: thereby after adversely biota and human bodies. It is difficult to remove residual pharmaceutical compounds using conventional water/wastewater treatment because of resistant property to photodegradation, biodegradation and chemical decomposition. Moreover, domestic literature data on the pollution of residual pharmaceutical compounds in rivers and lakes are limited. In this paper, species, sources, fate and risk of residual pharmaceutical compounds as well as behavior properties in freshwater resources are demonstrated to encourage the domestic concern about residual pharmaceutical compounds. An extensive review of existing data in the form of figures and tables, encompassing many therapeutic classes are presented.

Study on the Estimation Equation of Effluent Concentration from Constructed Wetland for Domestic Wastewater Treatment (생활오수 처리를 위한 인공습지의 처리수 수질 추정식에 관한 연구)

  • Yoon, C.G.;Kwun, S.K.;Jeon, J.H.
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.491-499
    • /
    • 2000
  • Effluent concentration estimation equations for treatment wetland were reviewed with 3 -year experimental data. Four equations from USEPA, WPCF, Kadlec and Knight, and this study were applied to the over 100 data points of 1996 to 1999 study at the pilot plant in Konkuk University. The system was a subsurface flow type and consisted of 60cm depth of sand and reeds, and it worked continuously including winter with domestic sewage from school building. Generally, all the equations demonstrated reasonable agreement with experimental data and they could be used for design process if selected carefully. Among them, the equation from this study showed the best fit for the data. The reason might be not only the equation was derived from the experimental data, but also it included plant coverage parameter in the equation while others did not Plant coverage was proved to be an important parameter in the prediction of the treatment wetland system, and its inclusion in the estimation equation could improve the accuracy. Although existing equations could be used in the wetland design, pilot plant experiment for the anticipated condition and subsequent equation development can provide more reliable equation. It takes time to obtain meaningful data from wetland system. Therefore, timely onset of well organized study is recommended before large scale application of treatment wetland system to either point or nonpoint source pollution abatement.

  • PDF

Lake Water Treatment Using a Ultrafiltration Membrane Process of Hollow Fiber Type (중공사형 한외여과 막분리 공정에 의한 하천수 처리)

  • 박진용
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.39-47
    • /
    • 1997
  • The self-designed membrane system was tested to examine the performance of the hollow fiber type polysulfone ultrafiltration(UF) membrane for the treatment of pure water(the 3rd treated water). The molecular weight cut-off's (MWCO) of the membranes used in this study were 5, 000 and 10, 000, respectively. The recovery rate, the ratio of permeate flow rate to the feed flow rate, increased as the temperature rose. The values of MWCO obtained in this study, using 2, 000 ppm polyethylene glycol and dextran solutions with various molecular weight, showed higher values than those suggested by SKI. Based on the results of the primary experiments, the water of the Gongji-stream, in which water quality is deteriorated by the inflow of domestic wastewater, was selected for the UF membrane test. Biological oxygen demand(BOD), total solids, and turbidity of the treated water had much lower values than those of the source water. Therefore, this study confirmed the possibility of the domestic water treatment using the hollow fiber type UF membrane.

  • PDF