• Title/Summary/Keyword: Domestic Noise

Search Result 306, Processing Time 0.03 seconds

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

Environmental Approach to Blasting Effect on the Surrounding Area when the Mine Blasting (광산 발파 시 인근지역에 미치는 발파영향에 대한 환경적 접근)

  • Jeong, Beonghun;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.5-12
    • /
    • 2015
  • Since blasting noise is impact noise, it will give a sudden shock to the human. In the case, such as the blast vibration, it has given aging buildings and livestock great damage to move the vibration along ground in nearby regions. In this study, the influence of the blasting generated during excavation was analyzed for effects on regional. A couple of field and laboratory surveys about geological were carried out to figure out the geological ratio in the study-performed area. Blast vibration noise was compared to the domestic and abroad case studies and each of the institutions permissible standards established the most appropriate criteria in site condition. The vibration velocity of blasting vibration exploits the values which were measured from test blasting on the ground in order to examine blasting effect. Considering the blasting point as the shortest distance from safety facilities (farms, private houses, etc.), the examination of the influence range, which was derived from the vibration velocity of blasting vibration, was performed to figure out how the point affected the safety facilities. Three-dimensional numerical analysis was performed a time history analysis in order to analyze the behavior of the structure for a dynamic blast load, which was determined in three directions of the blast vibration value. The results of three-dimensional numerical analysis and the blasting effect of blasting vibration estimation equation blasting vibration of impact circle with accompanying test blasting were compared. And the analysis confirmed similar results figures.

A study of Mechanical Properties of Hot Mix Asphalt for Developing of Quiet Pavement (저소음 포장체 개발을 위한 아스팔트 혼합물의 역학적 특성 연구)

  • Lee, Kwan-Ho;Jeong, Tae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Our domestic economy has been developed very rapidly after 1960's. Also, it is dramatically increasing traffic on road and surround environmental issues. Especially, rapid economic growth has been induced large construction of pavement, and bigger and higher traffic for transportation. These are making air pollution, traffic noise and vibration. The social requirement against the revealed road environment and traffic sound reduction is being demanded. Traffic noise of city zone is showed over the environmental specification more than 57%. In order to overcome these situations, the social attention is being increased. The quiet pavement is the same format of permeable pavement, but is not same for functional performance. In this research, it has been carried out to evaluate the fundamental-mechanical properties of hot mix asphalt for quiet pavement. Especially, couple of laboratory tests are conducted like marshall stability, resilient modulus, indirect tensile test, and compaction energy analysis with gyratory compaction curve. Also, two-layer pavement system has been adopted for developing of quiet pavement. The basic performance of hot mix asphalt of quiet pavement show a satisfaction of specification of hot mix asphalt.

Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas (흡수성 Biofilter 를 이용한 농촌 소규모 오수처리 시설의 성능)

  • Kwun, Soon-Kuk;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.310-315
    • /
    • 1999
  • The feasibility of an absorbent biofilter system was examined for rural wastewater treatment. Hydraulic loading rates varied from 50 to 250 cm/day. Effluent of the septic tank was fed into the absorbent biofilter, and small ventilation fan was provided to supply air at the rate of 250 L/min to aerate the biofilter. The biofilter system demonstrated high removal rates for $BOD_5$ and TSS at the loading rate of 150 cm/day, generally meeting the Korean effluent water quality standard of 20 mg/L applicable to both. The nutrient removal was less satisfactory than the results of $BOD_5$ and TSS, but it was within the expected range of biological treatment processes. Considering the abnormally high influent concentration of nutrients during the experiment, better performance results could have been obtained if ordinary domestic wastewater was used. The system performance was not significantly affected by the hydraulic loading up to 150 cm/day, which is far more than the loading limit of the sand filter systems. Maintenance requirement was minimal, and no problems with noise, odor, flies or sludge arose. Since the biofilter system can be operated at a distance, operation in remote rural area and multi-system connected to one control office might be advantageous to the rural area. Overall, considering the cost-effectiveness, stable performance, and minimum maintenance, the biofilter system was thought to be a competitive alternative to treat wastewater in Korean rural communities.

  • PDF

Case study of microseismic techniques for stability analysis of pillars in a limestone mine (석회석 광산 내 광주의 안정성 분석을 위한 미소진동 계측기술의 현장적용)

  • Kim, Chang Oh;Um, Woo-Yong;Chung, So-Keul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This study deals with the case that was the field application of the microseismic monitoring techniques for the stability monitoring in a domestic mine. The usefulness and limitations of the microseismic techniques were examined through analyzing the microseismic monitored data. The target limestone mine adopted a hybrid room-and-pillar mining method to improve the extraction ratio. The accelerometers were installed in each vertical pillar within the test bed which has the horizontal cross-section $50m{\times}50m$. The measured signals were divided into 4 types; blasting induced signal, drilling induced signal, damage induced signal, and electric noise. The stability analysis was performed based on the measured damage induced signals. After the blasting in the mining section close to the test bed, the damage of the pillar was increased and rockfall near the test bed could be estimated from monitored microseismic data. It was possible to assess the pillar stability from the changes of daily monitored data and the proposed safety criteria from the accumulated monitored data. However, there was a difficulty to determine the 3D microseismic source positions due to the 2D local sensor arrays. Also, it was needed to use real-time monitoring methods in domestic mines. By complementing the problems encountered in the mine application and comparing microseismic monitored data with mining operations, the microseismic monitoring technique can be used as a better safety method.

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.

Development and Manufacture of W-band MMIC Chip and manufacture of Transceiver (W-대역 MMIC 칩 국내 개발 및 송수신기 제작)

  • Kim, Wansik;Jung, Jooyong;Kim, Younggon;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.175-181
    • /
    • 2019
  • For the purpose of Application to the small radar sensor, the MMIC Chip, which is the core component of the W-band, was designed in Korea according to the characteristics of the transceiver and manufactured by 0.1㎛ GaAs pHEMT process, and compared with the MMIC chip purchased overseas. The noise figure of low noise amplifier, insertion loss of the switch and image rejection performance of the down-converted mixer MMIC chip showed better characteristics than those of commercial chips. The MMIC chip developed in domestic was applied to the transmitter and receiver through W-band waveguide low loss transition structure design and impedance matching to verify the performance after the fabrication is 9.17 dB, which is close to the analysis result. As a result, it is judged that the transceiver can be applied to the small radar sensor better than the MMIC chip purchased overseas.

Application of the Onsite EEW Technology Using the P-Wave of Seismic Records in Korea (국내 지진관측기록의 P파를 이용한 지진현장경보기술 적용)

  • Lee, HoJun;Jeon, Inchan;Seo, JeongBeom;Lee, JinKoo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.133-143
    • /
    • 2020
  • Purpose: This study aims to derive a predictive empirical equation for PGV prediction from P-wave using earthquake records in Korea and to verify the reliability of Onsite EEW. Method: The noise of P wave is removed from the observations of 627 seismic events in Korea to derive an empirical equation with PGV on the base rock, and reliability of Onsite alarms is verified from comparing PGV's predictions and observations through simulation using the empirical equation. Result: P-waves were extracted using the Filter Picker from earthquake observation records that eliminated noises, a linear regression with PGV was used to derive a predictive empirical equation for Onsite EEW. Through the on-site warning simulation we could get a success rate of 80% within the MMI±1 error range above MMI IV or higher. Conclusion: Through this study, the design feasibility and performance of Onsite EEWS using domestic earthquake records were verified. In order to increase validity, additional medium-sized seismic observations from abroad are required, the mis-detection of P waves is controlled, and the effect of seismic amplification on the surface is required.

A Study on the Possibility of the Earthquake Detection based on Telluric Current Monitoring (지전류 모니터링 기반 지진 감지 가능성 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jun, Seokang;Chung, Hojoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.107-115
    • /
    • 2019
  • Recently, since earthquakes have happened frequently in Gyeongju and Pohang areas in Korea, the earthquake detection research gets lots of attention. Geophysical monitoring data have been changed during the earthquake activity because the huge amount of energy is accumulated. The change of telluric current can be predicted by both of piezoelectric and electrokinetic effects before or during the earthquake occurrence, and if the change value exceeds the conventional telluric current noise, we can measure changes in the electric field associated with earthquakes. In this study, we have self-developed and verified the system that can monitor the telluric current. In order to verify our telluric current monitoring system, we installed lines of 40 m (E-W direction) and 28 m (N-S direction) on the site in Pohang. The telluric currents were sampled at 1 kHz for about a month. We have compared and analyzed the data of earthquake signals and electrical noises based on the earthquakes that occurred during the monitoring period. We have monitored if there were significant signals related to the earthquake on measured time series data. Through this study, we will suggest the direction of continuous research in the future.

A Case of Shell Structure Demolition Using Explosives (Shell 구조물의 발파해체 사례)

  • Song, Young-Suk;Jeong, Min-Su
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.67-80
    • /
    • 2011
  • Recently, the number of structure demolitions has increased in both civil and architecture fields due to various reasons such as redevelopment of a city, utilization of sites and restoration of deteriorated structures. In the past, domestic shell structures had been constructed with brick masonry and they were not high. Therefore, their demolition had been executed with ease. Recently, however, taller reinforced concrete shell structures have become a target for the destruction. Under these circumstances, how to efficiently demolish a structure and how to minimize effects of the destruction on environment including vibration and noise have become a main issue. One of the possible solutions is the explosive demolition. In this study, a case of explosives demolition of the stack, which is located in Jeju Thermal Power Plant in Republic of Korea and is 70 m tall, is addressed. In order to fall down the structure against the desired direction, 13.5 kg dynamite and 100 electric detonators were used.