• Title/Summary/Keyword: Domain combination

Search Result 330, Processing Time 0.028 seconds

A Logical Model of Collision Response for Simulation of the Virtual Environment (가상환경의 시뮬레이션을 위한 충돌반응 양상의 논리적 모델링)

  • Kim Byung-Ju;Park Jong-Hee
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.821-830
    • /
    • 2004
  • In this paper, we model the downward collision of a falling object to the base. We aim to provide maximum diversity of response to physical. collision. To this end, the primary design concern of the model is to unfold the collision phenomenon in a logical and natural manner, detailed enough to construct an immersive virtual environment. To achieve these requirements, first we determine domains for the characteristic of the material of the falling objects, and select the dominant force of the collision. We formulate the collision phenomena with combination of primitive attributes and their relationships. The formulated function evaluates the results of the collision in qualitative aspects as well as in quantitative aspects. Between the collision issues, 'Collision Detection' and 'Collision Response', this paper focuses on Collision Response issue.

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

Simulation Study on the Effect of the Emitter Orientation and Photonic Crystals on the Outcoupling Efficiency of Organic Light-Emitting Diodes

  • Lee, Ju Seob;Ko, Jae-Hyeon;Park, Jaehoon;Lee, Jong Wan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.732-738
    • /
    • 2014
  • Combined optical simulation of the ray-tracing technique and the finite difference time domain method was used to investigate the effect of the emitter orientation and the photonic crystal layer on the outcoupling efficiency (OCE) of bottom-emission type organic light emitting diodes (OLEDs). The OLED with a horizontal emitter exhibited an opposite interference effect to that of one with a vertical emitter, which suggested that the OCE would be very sensitive to the emitter orientation at a fixed emitter-cathode distance. The OLED with a horizontal emitter exhibited much larger OCE than that with a vertical emitter did, which was due to the substantial difference in the radiation pattern along with the different coupling with the surface plasmon excitation. The OCE with a horizontal emitter was increased by approximately 1.3 times by inserting a photonic crystal layer between the indium tin oxide layer and the glass substrate. The present study suggested that appropriate control of the emitter orientation and its combination to other outcoupling structures could be used to enhance the OCE of OLEDs substantially.

Navier-Stokes Simulation of Unsteady Rotor-Airframe Interaction with Momentum Source Method

  • Kim, Young-Hwa;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination as a whole. This often imposes a serious computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is to adopt a momentum source method in which the action of rotor is approximated as momentum source over a rotor disc plane in a stationary computational domain. This makes the simulation much simpler. For unsteady simulation, the instantaneous momentum sources are assigned only to a portion of disk plane corresponding to blade passage. The momentum source is obtained by using blade element theory with dynamic inflow model. Computations are carried out for the simple rotor-airframe model (the Georgia Tech model) and the results of the simulation are compared with those of the full Navier-Stokes simulation with moving mesh system for rotor and with experimental data. It is shown that the present simulation yields results as good as those of the full Navier-Stokes simulation.

A EMG Signal Processing Algorithm for SMUAP Pattern Classification (SMUAP의 패턴분류를 위한 근 신호처리 알고리듬)

  • Lee, Jin;Jo, Il-Jun;Byun, Youn-Shik;Hong, Woan-Hue;Kim, Sung-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.106-111
    • /
    • 1989
  • A new EMG signal processing algorithm for SMUAP pattern classification is proposed. It checks the combination and regularity of ISI using a spike counter as a decision making routine, and performs SMUAP waveform alignment in frequency domain and selects spikes through FIR filtering. As a result, with the EMG signals recorded during 5 seconds at 10-50% MVC force level, the SMUAP ranged from five to nine units were classified and identification rate is greater than 55 percent using a concentric needle electrode. In the IBM PC/AT the processing time typically required 2 minutes.

  • PDF

An Application of Screw Motions for Mechanical Assemblies (기계부품들의 조립 및 해체과정 설계를 위한 스크류이론의 응용)

  • 김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • CAD systems offer a variety of techniques for designing and rendering models of static 3D objects and even of mechanisms, but relatively few tools exist for interactively specifying arbitrary movements of rigid bodies through space. Such tools are essential, not only for artistic animation, but also, for planning and demonstrating assembly and disassembly procedure of manufactured products. A rigid body motion is a continuous mapping from the time domain to a set of positions. To relieve the designers from the burden of specifying this mapping in abstract mathematical terms, combinations of simple rigid motion primitives, such as linear translations or constant axis rotations, are often used. These simple motions are planar and thus ill-suited for approximating arbitrary motions in 3D-space. Instead, we propose the screw motion primitive, a special combination of linear translations and constant axis rotations, which has a simple geometric representation that can be automatically and unambiguously computed from the starting and ending positions of the moving body. Although, any two positions may be interpolated by an infinity of motions, we chose the screw motion for its relative generality and its computational advantages. The paper covers original algorithms for computing the screw motions from interpolated positions and envelopes of swept regions to predict collisions.

  • PDF

Immunogenicity and Protective Efficacy of a Dual Subunit Vaccine Against Respiratory Syncytial Virus and Influenza Virus

  • Park, Min-Hee;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.261-268
    • /
    • 2012
  • Respiratory syncytial virus (RSV) and influenza virus are the most significant pathogens causing respiratory tract diseases. Composite vaccines are useful in reducing the number of vaccination and confer protection against multiple infectious agents. In this study, we generated fusion of RSV G protein core fragment (amino acid residues 131 to 230) and influenza HA1 globular head domain (amino acid residues 62 to 284) as a dual vaccine candidate. This fusion protein, Gcf-HA1, was bacterially expressed, purified by metal resin affinity chromatography, and refolded in PBS. BALB/c mice were intranasally immunized with Gcf-HA1 in combination with a mucosal adjuvant, cholera toxin (CT). Both serum IgG and mucosal IgA responses specific to Gcf and HA1 were significantly increased in Gcf-HA1/CT-vaccinated mice. To determine the protective efficacy of Gcf-HA1/CT vaccine, immunized mice were challenged with RSV (A2 strain) or influenza virus (A/PR/8/34). Neither detectable viral replication nor pathology was observed in the lungs of the immune mice. These results demonstrate that immunity induced by intranasal Gcf-HA1/CT immunization confers complete protection against both RSV and homologous influenza virus infection, suggesting our Gcf-HA1 vaccine candidate could be further developed as a dual subunit vaccine against RSV and influenza virus.

A Study on the Algorithm for Detection of Partial Discharge in GIS Using the Wavelet Transform

  • J.S. Kang;S.M. Yeo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.214-221
    • /
    • 2003
  • In view of the fact that gas insulated switchgear (GIS) is an important piece of equipment in a substation, it is highly desirable to continuously monitor the state of equipment by measuring the partial discharge (PD) activity in a GIS, as PD is a symptom of an insulation weakness/breakdown. However, since the PD signal is relatively weak and the external noise makes detection of the PD signal difficult, it therefore requires careful attention in its detection. In this paper, the algorithm for detection of PD in the GIS using the wavelet transform (WT) is proposed. The WT provides a direct quantitative measure of the spectral content and dynamic spectrum in the time-frequency domain. The most appropriate mother wavelet for this application is the Daubechies 4 (db4) wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, is very well suited to detecting high frequency signals of very short duration, such as those associated with the PD phenomenon. The proposed algorithm is based on utilizing the absolute sum value of coefficients, which are a combination of D1 (Detail 1) and D2 (Detail 2) in multiresolution signal decomposition (MSD) based on WT after noise elimination and normalization.

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Discretization of Nonlinear Systems with Delayed Multi-Input VIa Taylor Series and Scaling and Squaring Technique

  • Yuanliang Zhang;Chong Kil To
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1975-1987
    • /
    • 2005
  • An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method's parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay maneuvering an automobile.