• Title/Summary/Keyword: Document clustering

Search Result 225, Processing Time 0.018 seconds

Dynamic Text Categorizing Method using Text Mining and Association Rule

  • Kim, Young-Wook;Kim, Ki-Hyun;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.103-109
    • /
    • 2018
  • In this paper, we propose a dynamic document classification method which breaks away from existing document classification method with artificial categorization rules focusing on suppliers and has changing categorization rules according to users' needs or social trends. The core of this dynamic document classification method lies in the fact that it creates classification criteria real-time by using topic modeling techniques without standardized category rules, which does not force users to use unnecessary frames. In addition, it can also search the details through the relevance analysis by calculating the relationship between the words that is difficult to grasp by word frequency alone. Rather than for logical and systematic documents, this method proposed can be used more effectively for situation analysis and retrieving information of unstructured data which do not fit the category of existing classification such as VOC (Voice Of Customer), SNS and customer reviews of Internet shopping malls and it can react to users' needs flexibly. In addition, it has no process of selecting the classification rules by the suppliers and in case there is a misclassification, it requires no manual work, which reduces unnecessary workload.

Research on Function and Policy for e-Government System using Semantic Technology (전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구)

  • Jang, Young-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression. Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using existing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.

  • PDF

A Comparative Study of Feature Selection Methods for Korean Web Documents Clustering (한글 웹 문서 클러스터링 성능향상을 위한 자질선정 기법 비교 연구)

  • Kim Young-Gi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2005
  • This Paper is a comparative study of feature selection methods for Korean web documents clustering. First, we focused on how the term feature and the co-link of web documents affect clustering performance. We clustered web documents by native term feature, co-link and both, and compared the output results with the originally allocated category. And we selected term features for each category using $X^2$, Information Gain (IG), and Mutual Information (MI) from training documents, and applied these features to other experimental documents. In addition we suggested a new method named Max Feature Selection, which selects terms that have the maximum count for a category in each experimental document, and applied $X^2$ (or MI or IG) values to each term instead of term frequency of documents, and clustered them. In the results, $X^2$ shows a better performance than IG or MI, but the difference appears to be slight. But when we applied the Max Feature Selection Method, the clustering Performance improved notably. Max Feature Selection is a simple but effective means of feature space reduction and shows powerful performance for Korean web document clustering.

A Study on the efficiency of similarity and clustering measure in Historical Writing Document (역사적 기록 문서에서 효율적인 유사도 및 클러스터링 측정에 관한 연구)

  • 한광덕
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.94-101
    • /
    • 2002
  • It expected a lot of changes in mass media and documentation expression as documents on web are getting diverse, complex and massive. An Annals of The Chosun Dynasty is a very important document used for researching historical facts and is published as CD-Rom. However. The CD-Rom was composed as content-based and using simple search method, therefore it's very difficult to make determine event-relationship between documents factors. Because of that, we studied to discover event-relationship between documents through clustering and efficient similarity method among Annals of The Chosun Dynasty. For the research method, we discovered the best similarity method for historical written documents through simulation similarity measures of Annals of The Chosun Dynasty documents. Then we did simulation-clustering documents based on similarity probability. In evaluation of the clustered documents , the results were the same as when manually figured.

  • PDF

The Effectiveness of Hierarchic Clustering on Query Results in OPAC (OPAC에서 탐색결과의 클러스터링에 관한 연구)

  • Ro, Jung-Soon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.1
    • /
    • pp.35-50
    • /
    • 2004
  • This study evaluated the applicability of the static hierarchic clustering model to clustering query results in OPAC. Two clustering methods(Between Average Linkage(BAL) and Complete Linkage(CL)) and two similarity coefficients(Dice and Jaccard) were tested on the query results retrieved from 16 title-based keyword searchings. The precision of optimal dusters was improved more than 100% compared with title-word searching. There was no difference between similarity coefficients but clustering methods in optimal cluster effectiveness. CL method is better in precision ratio but BAL is better in recall ratio at the optimal top-level and bottom-level clusters. However the differences are not significant except higher recall ratio of BAL at the top-level duster. Small number of clusters and long chain of hierarchy for optimal cluster resulted from BAL could not be desirable and efficient.

A Clustering Method Based on Path Similarities of XML Data (XML 데이타의 경로 유사성에 기반한 클러스터링 기법)

  • Choi Il-Hwan;Moon Bong-Ki;Kim Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.342-352
    • /
    • 2006
  • Current studies on storing XML data are focused on either mapping XML data to existing RDBMS efficiently or developing a native XML storage. Some native XML storages store each XML node with parsed object form. Clustering, the physical arrangement of each object, can be an important factor to increase the performance with this storing method. In this paper, we propose re-clustering techniques that can store an XML document efficiently. Proposed clustering technique uses path similarities among data nodes, which can reduce page I/Os when returning query results. And proposed technique can process a path query only using small number of clusters as possible instead of using all clusters. This enables efficient processing of path query because we can reduce search space by skipping unnecessary data. Finally, we apply existing clustering techniques to store XML data and compare the performance with proposed technique. Our results show that the performance of XML storage can be improved by using a proper clustering technique.

Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm (Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류)

  • 고수정;이정현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2001
  • The previous Bayesian document categorization method has problems that it requires a lot of time and effort in word clustering and it hardly reflects the semantic information between words. In this paper, we propose a weighted Bayesian document categorizing method based on association word knowledge base acquired by mining technique. The proposed method constructs weighted association word knowledge base using documents in training set. Then, classifier using Bayesian probability categorizes documents based on the constructed association word knowledge base. In order to evaluate performance of the proposed method, we compare our experimental results with those of weighted Bayesian document categorizing method using vocabulary dictionary by mutual information, weighted Bayesian document categorizing method, and simple Bayesian document categorizing method. The experimental result shows that weighted Bayesian categorizing method using association word knowledge base has improved performance 0.87% and 2.77% and 5.09% over weighted Bayesian categorizing method using vocabulary dictionary by mutual information and weighted Bayesian method and simple Bayesian method, respectively.

  • PDF

Hierarchical Automatic Classification of News Articles based on Association Rules (연관규칙을 이용한 뉴스기사의 계층적 자동분류기법)

  • Joo, Kil-Hong;Shin, Eun-Young;Lee, Joo-Il;Lee, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.730-741
    • /
    • 2011
  • With the development of the internet and computer technology, the amount of information through the internet is increasing rapidly and it is managed in document form. For this reason, the research into the method to manage for a large amount of document in an effective way is necessary. The conventional document categorization method used only the keywords of related documents for document classification. However, this paper proposed keyword extraction method of based on association rule. This method extracts a set of related keywords which are involved in document's category and classifies representative keyword by using the classification rule proposed in this paper. In addition, this paper proposed the preprocessing method for efficient keywords creation and predicted the new document's category. We can design the classifier and measure the performance throughout the experiment to increase the profile's classification performance. When predicting the category, substituting all the classification rules one by one is the major reason to decrease the process performance in a profile. Finally, this paper suggested automatically categorizing plan which can be applied to hierarchical category architecture, extended from simple category architecture.

Word Extraction from Table Regions in Document Images (문서 영상 내 테이블 영역에서의 단어 추출)

  • Jeong, Chang-Bu;Kim, Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.369-378
    • /
    • 2005
  • Document image is segmented and classified into text, picture, or table by a document layout analysis, and the words in table regions are significant for keyword spotting because they are more meaningful than the words in other regions. This paper proposes a method to extract words from table regions in document images. As word extraction from table regions is practically regarded extracting words from cell regions composing the table, it is necessary to extract the cell correctly. In the cell extraction module, table frame is extracted first by analyzing connected components, and then the intersection points are extracted from the table frame. We modify the false intersections using the correlation between the neighboring intersections, and extract the cells using the information of intersections. Text regions in the individual cells are located by using the connected components information that was obtained during the cell extraction module, and they are segmented into text lines by using projection profiles. Finally we divide the segmented lines into words using gap clustering and special symbol detection. The experiment performed on In table images that are extracted from Korean documents, and shows $99.16\%$ accuracy of word extraction.

A Study on the Musical Theme Clustering for Searching Note Sequences (음렬 탐색을 위한 주제소절 자동분류에 관한 연구)

  • 심지영;김태수
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.3
    • /
    • pp.5-30
    • /
    • 2002
  • In this paper, classification feature is selected with focus of musical content, note sequences pattern, and measures similarity between note sequences followed by constructing clusters by similar note sequences, which is easier for users to search by showing the similar note sequences with the search result in the CBMR system. Experimental document was $\ulcorner$A Dictionary of Musical Themes$\lrcorner$, the index of theme bar focused on classical music and obtained kern-type file. Humdrum Toolkit version 1.0 was used as note sequences treat tool. The hierarchical clustering method is by stages focused on four-type similarity matrices by whether the note sequences segmentation or not and where the starting point is. For the measurement of the result, WACS standard is used in the case of being manual classification and in the case of the note sequences starling from any point in the note sequences, there is used common feature pattern distribution in the cluster obtained from the clustering result. According to the result, clustering with segmented feature unconnected with the starting point Is higher with distinct difference compared with clustering with non-segmented feature.