• Title/Summary/Keyword: Disturbance input

Search Result 472, Processing Time 0.031 seconds

Indirect Adaptive Sliding Mode Control Using Parameter Estimation of Hopfield Network (Hopfield 신경망의 파라미터 추정을 이용한 간접 적응 가변구조제어)

  • Ham, Jae-Hoon;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1037-1041
    • /
    • 1996
  • Input-output linearization technique in nonlinear control does not guarantee the robustness in the presence of parameter uncertainty or unmodeled dynamics, etc. However, it has been used as an important preliminary step in achieving additional control objectives, for instance, robustness to parameter uncertainty and disturbance attenuation. An indirect adaptive control scheme based on input-output linearization is proposed in this paper. The scheme consists of a Hopfield network for process parameter identification and an adaptive sliding mode controller based on input-output linearization, which steers the system response into a desired configuration. A numerical example is presented for the trajectory tracking of uncertain nonlinear dynamic systems with slowly time-varying parameters.

  • PDF

Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle (후륜 조향 동력학 모델 및 제어 로직 개발)

  • 장진희;김상현;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

An Improved Integral Sliding Mode Controller for Regulation Control of Robot Manipulators (로봇 메니플레이터의 레귤레이션 제어를 위한 개선된 적분 슬라이딩 모드 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.103-113
    • /
    • 2018
  • In this paper, an improved integral variable structure regulation controller is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties and payload variations.

Application of Sliding Mode Fuzzy Control with Disturbance Estimator to Benchmark Problem for Wind Excited Building (풍하중을 받는 벤치마크 구조물의 진동제어를 위한 외란 예측기가 포함된 슬라이딩 모드 퍼지 제어)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.246-250
    • /
    • 2000
  • A distinctive feature in vibration control of a large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. The sliding mode fuzzy control (SMFC), which is of interest in this study, may use not only the structural response measurement but also the wind force measurement. Hence, an adaptive disturbance estimation filter is introduced to generate a wind force vector at each time instance based on the measured structural response and the stochastic information of the wind force. The structure of the filter is constructed based on an auto-regressive with auxiliary input model. A numerical simulation is carried out on a benchmark problem of a wind-excited building. The results indicate that the overall performance of the proposed SMFC is as good as the other methods and that most of the performance indices improve as the adaptive disturbance estimation filter is introduced.

  • PDF

On-line Balancing of a Ultra-high speed Rotor with Residual Unbalance (자기베어링을 이용한 잔류질량불균형이 존재하는 초고속 회전체의 온라인 밸런싱)

  • 송상호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • In order to minimize vibration problems of rotating machinery rotors have been assembled through balancing machines. Since perfect balancing is impossible, residual unbalances cause serious vibration while the rotor is in high speed region. To minimize unbalance effects of magnetic bearing systems (AMB) during rotation on-line balancing methodology was studied. Unbalances were considered as disturbances of the system. The disturbance observer was used to estimate unbalance force from measurable state and input variables. Balancing inputs computed according to LQR and outputs of the observer were applied to eliminate unbalances during high speed rotation of the AMB. the effectiveness of the on-line balancing was verified through numerical simulations.

  • PDF

Multivariable $H_{\infty}$ disturbance rejection control for tandem cold mills (연속 냉간 압연기의 다변수 $H_{\infty}$ 외란제거 제어)

  • 김승수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.391-394
    • /
    • 1997
  • A H$_{\infty}$ control techniques with roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occurred in rolling stand itself of tandem cold mills. A robust controller to the disturbances is designed using H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and knowledge of disturbance spectrum in the frequency domain. And, non-standard H$_{\infty}$ control problem caused by selection of weight function having poles on j.omega. axis is discussed. The evaluation for the resultant controller composed by H$_{\infty}$ synthesis is done through computer simulations. The effectiveness of the proposed method is compared to those of the conventional LQ synthesis method and a feedforward controller against roll eccentricity, which was already studied.ied.

  • PDF

Improvement of Control Performance by Data Fusion of Sensors

  • Na, Seung-You;Shin, Dae-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • In this paper, we propose a general framework for sensor data fusion applied to control systems. Since many kinds of disturbances are introduced to a control system, it is necessary to rely on multisensor data fusion to improve control performance in spite of the disturbances. Multisensor data fusion for a control system is considered a sequence of making decisions for a combination of sensor data to make a proper control input in uncertain conditions of disturbance effects on sensors. The proposed method is applied to a typical control system of a flexible link system in which reduction of oscillation is obtained using a photo sensor at the tip of the link. But the control performance depends heavily on the environmental light conditions. To overcome the light disturbance difficulties, an accelerometer is used in addition to the existing photo sensor. Improvement of control performance is possible by utilizing multisensor data fusion for various output responses to show the feasibility of the proposed method in this paper.

A New Robust Variable Structure Controller with Nonlinear Integral-Type Sliding Surface for Uncertain Systems with Mismatched Uncertainties and Disturbance (부정합조건 불확실성과 외란을 갖는 시스템을 위한 비선형 적분 슬라이딩 면을 갖는 새로운 강인한 적분 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.623-629
    • /
    • 2010
  • In this paper, a new robust variable structure controller based on a nonlinear integral type sliding surface is presented for the control of uncertain systems with mismatched uncertainties and disturbance. A nonlinear integral type sliding surface is suggested for removing the reaching phase. After its ideal sliding dynamics is obtained, the two design methods are presented. A corresponding control input is proposed to satisfy the closed loop stability in the sense of Lyapunov and the existence condition of the sliding mode on the nonlinear integral type sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

A Study On The Trajectory Control of A SCARA Robot Using Sliding Mode (슬라이딩모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구)

  • 이민철;진상영;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 1995
  • An industrial robot needs a simple and robust control algorithm obtaining high precision control performance in spite of disturbance and parameter's change. In this paper, for solving this problem, a new sliding mode control algorithm is proposed and applied to the trajectory control of a SCARA type robot. The proposed algorithm has diminished the chattering occurring in sliding mode by setting a dead band along the switching line on the phase plane. It shows that we can easily obtain a simple switching control input satisfying sliding mode in spite of regarding nonlinear terms of a manipulator and servo system as disturbance. A guideline for selection of dead-band width is determined by optimal value of cost function presenting magnitudes of chattering and error. By this algorithm, we can expect the high performance of the trajectory tracking of an industrial robot which needs a robust and simple algorithm.

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.