• Title/Summary/Keyword: Distribution pipe

Search Result 620, Processing Time 0.025 seconds

A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure (브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han , Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

A Study on Design Support Technique for Water Distribution Network using GIS (GIS를 이용한 상수관로 설계지원 기법 연구)

  • Cho, Hyo-Seob;Choi, Seung-Chul;Lee, Gi-Ha;Cho, Bok-Hwan;Kim, Jeong-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.103-116
    • /
    • 2005
  • Although there have been many researches to construct a database of water distribution networks using GIS, most of them were not linked with an model for the analysis of pipe networks because it is difficult to make spatial data about complex water distribution networks for building a detail model. Therefore, it is necessary to develop the method based on GIS to build geographical data for design of water distribution pipeline systems. In this study, an innovated design support technique using GIS is proposed for a hydraulic analysis model of water distribution networks. With the function of spatial analysis in GIS system, the results from a pipe network model are used to analyze the suitability of the location of pipeline network, the spatial suitability comprised the analysis of the degree of pipe age, the altitude distribution of water pressure, and the water supply system for the customer.

  • PDF

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

Optimal Design of Irrigation Pipe Network with Multiple Sources

  • Lyu, Heui-Jeong;Ahn, Tae-Jin
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.9-18
    • /
    • 1997
  • Abstract This paper presents a heuristic method for optimal design of water distribution system with multiple sources and potential links. In multiple source pipe network, supply rate at each source node affects the total cost of the system because supply rates are not uniquely determined. The Linear Minimum Cost Flow (LMCF) model may be used to a large scale pipe network with multiple sources to determine supply rate at each source node. In this study the heuristic method based on the LMCF is suggested to determine supply rate at each source node and then to optimize the given layout. The heuristic method in turn perturbs links in the longest path of the network to obtain the supply rates which make the optimal design of the pipe network. Once the best tree network is obtained, the frequency count of reconnecting links by considering link failure is in turn applied to form loop to enhance the reliability of the best tree network. A sample pipe network is employed to test the proposed method. The results show that the proposed method can yield a lower cost design than the LMCF alone and that the proposed method can be efficiently used to design irrigation systems or rural water distribution systems.

  • PDF

The Effects of Geometrical Shape and Post Weld Treatment on Welding Residual Stress Distribution of Weldment in Multi-pass Welded Pipe (다층용접배관의 용접부 잔류음력분포에 대한 기하학적형상과 용접후처리의 영향)

  • 김철한;조선영;김복기;배동호
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the residual stress fields of multi-pass welded were analyzed by FEA under various geometrical conditions. In order to estimate the effects of pipe geometries on residual stress distribution, welding processes of each model were performed under the same heat cycles. And then, the influence of cutting off the weld bead on the residual stress redistribution was also estimated. From the results, in the range of t/D=0.05, axial residual stresses on the outer surface of the welded pipe were linearly decreased with pipe diameter increase. On the other hand, hoop residual stresses were not influenced by them. And both axial and hoop residual stresses on the outer surface of the welded pipe were increased with pipe diameter increase. But, when t/D was smaller than 0.05, they were converged in the nearly same value. The maximum residual stresses were generated at around HAZ. It in therefore necessary to consider them in welding design, strength evaluation, and analysis of fracture characteristics.

  • PDF

An Experimental Study on the Residual Stress Distribution at Circumferential Welds in Pipes (파이프 원주방향 용접부의 잔류응력분포 특성에 관한 실험적 연구)

  • Namkoong, Jae-Gwan;Hong, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1991
  • A knowledge of the resdual stress distribution at circumferential weldments can normally increase the accuracy of a fracture assessment in pipe line. In this paper, we present the measurements about the residual stress distributions at three kinds of circumferential butt welded pipes using the holl drilling strain gage method. By this experiment, we have obtined the following characteristics. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed from compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self-restraint bending force in the pipe welding.

  • PDF

Pipe Design for Hydraulic System in Construction Heavy Equipment by Numerical Analysis (수치해석을 통한 건설중장비 유압시스템용 파이프설계에 대한 연구)

  • Shin, Yoo In;Yi, Chung Seob;Han, Sung Gil;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.64-71
    • /
    • 2019
  • We herein propose a systematic design method of hydraulic pipes used in heavy construction equipment. We found that even though many design studies have been conducted regarding major hydraulic components such as pumps, cylinders, and control valves, studies regarding the optimal design of hydraulic pipes are scarce. In this study, the design of four types of pipes is considered: two high-pressure and two low-pressure pipes. First, fluid flow analysis was conducted based on oil flow and pressure for various radii of curvature. For a check-valve pipe, we considered the location of an inlet pipe. We could visualize fluid flow inside the pipe according to the flow velocity and pressure distribution. Based on fluid flow analysis, we conducted a structural analysis that revealed the stress distribution and concentration for each pipe design. We selected the best design parameters for each pipe design, fabricated the pipes, and subsequently tested them for validity.

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.