• Title/Summary/Keyword: Distribution networks

Search Result 1,340, Processing Time 0.032 seconds

Probabilistic Power Flow Studies Incorporating Correlations of PV Generation for Distribution Networks

  • Ren, Zhouyang;Yan, Wei;Zhao, Xia;Zhao, Xueqian;Yu, Juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.461-470
    • /
    • 2014
  • This paper presents a probabilistic power flow (PPF) analysis method for distribution network incorporating the randomness and correlation of photovoltaic (PV) generation. Based on the multivariate kernel density estimation theory, the probabilistic model of PV generation is proposed without any assumption of theoretical parametric distribution, which can accurately capture not only the randomness but also the correlation of PV resources at adjacent locations. The PPF method is developed by combining the proposed PV model and Monte Carlo technique to evaluate the influence of the randomness and correlation of PV generation on the performance of distribution networks. The historical power output data of three neighboring PV generators in Oregon, USA, and 34-bus/69-bus radial distribution networks are used to demonstrate the correctness, effectiveness, and application of the proposed PV model and PPF method.

Development of the digital protection relay for protecting distributed generation (분산전원 보호용 디지털 보호계전기 개발)

  • Cho, Chul-Hee;Lee, Byeong-Ho;Oh, Eui-Seok;Ko, Chul-Jin;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.181-183
    • /
    • 2005
  • The existing distribution networks are growing with an increase of power demand more and more. Therefore, for efficient operation of distribution networks, operators are much in need of distributed generation. This paper describes a development of the digital protection relay(HIMAP) for protecting distributed generation which is expected to play an increasing role in electric power systems in the near future. This paper particularly introduces frequency protective algorithm and reverse power protective algorithm among the relaying algorithms for protecting distributed generation in distribution networks and resents capability of a developed digital protection relay including these algorithms.

  • PDF

The Robustness of Coding and Modulation for Body-Area Networks

  • Biglieri, Ezio;Alrajeh, Nabil
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • We consider transmission over body area networks. Due to the difficulty in assessing an accurate statistical model valid for multiple scenarios, we advocate a system design technique favoring robustness. Our approach, which is based on results in [12] and generalizes them, examines the variation of a performance metric when the nominal statistical distribution of fading is replaced by the worst distribution within a given Kullback-Leibler divergence from it. The sensitivity of the performance metric to the divergence from the nominal distribution can be used as an indication of the design robustness. This concept is applied by evaluating the error probability of binary uncoded modulation and the outage probability-the first parameter is useful to assess system performance with no error-control coding, while the second reflects the performance when a near-optimal code is used. The usefulness of channel coding can be assessed by comparing its robustness with that of uncoded transmission.

Energy Efficient IDS Node Distribution Algorithm using Minimum Spanning Tree in MANETs

  • Ha, Sung Chul;Kim, Hyun Woo
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2016
  • In mobile ad hoc networks(MANETs), all the nodes in a network have limited resources. Therefore, communication topology which has long lifetime is suitable for nodes in MANETs. And MANETs are exposed to various threats because of a new node which can join the network at any time. There are various researches on security problems in MANETs and many researches have tried to make efficient schemes for reducing network power consumption. Power consumption is necessary to secure networks, however too much power consumption can be critical to network lifetime. This paper focuses on energy efficient monitoring node distribution for enhancing network lifetime in MANETs. Since MANETs cannot use centralized infrastructure such as security systems of wired networks, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method to cover all the nodes in a network and enhance the network lifetime. Simulation results show that the proposed algorithm has better performance in comparison with the existing algorithms.

Grid-Based Key Pre-Distribution in Wireless Sensor Networks

  • Mohaisen, Abedelaziz;Nyang, Dae-Hun;Maeng, Young-Jae;Lee, Kyung-Hee;Hong, Do-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.195-208
    • /
    • 2009
  • In this paper, we introduce a grid-based key pre-distribution scheme in wireless sensor networks, which aims to improve the connectivity and resiliency while maintaining a reasonable overhead. We consider simplification of the key establishment logic and enhancement of the connectivity via plat polynomial assignment on a three-dimensional grid for node allocation and keying material assignment. We demonstrate that our scheme results in improvements via a detailed discussion on the connectivity, resource usage, security features and resiliency. A comparison with other relevant works from the literature along with a demonstrated implementation on typical sensor nodes shows the feasibility of the introduced scheme and its applicability for large networks.

Chaotic Neural Networks for Optimal Reconfiguration in Distribution Systems (카오스 신경망을 이용한 배전계통 최적 구성)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Yu-Jeong;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.279-281
    • /
    • 2001
  • This paper presents a chaotic neural networks to solve the distribution feeder reconfiguration problem for loss reduction. Feeder reconfiguration problem is the determination of switching option that minimizes the power losses for a particular set of loads in distribution systems. A chaotic neural networks is used to determine the switching combinations, select the status of the switches, and find the best combination of switches for minimum loss. The proposed method has been tested on 32 bus system, and the results indicate that it is able to determine the appropriate switching options for optimal configuration.

  • PDF

Optimal Routing of Distribution Networks Considering Reliability Indices (신뢰도지수를 고려한 배전계통시스템의 최적전력전송경로 결정)

  • Roh, P.K.;Kim, J.O.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.915-917
    • /
    • 1998
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The results showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

A Traffic Distribution Scheme for Connectionless Data Service using Multi-Path in ATM Networks (ATM 망에서 다중 경로를 이용한 비연결형 트랙픽의 분산 기법)

  • 서원석;오영열;김석규;이배용;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 1996
  • With the advent of B-ISDN based on ATM technonlogy, ther are increasing needs for the interconnection of existing LAN/MAN's through ATM networks. ATM networks, therefore, must provide connectionless service. In this paper, the traffic distributio scheme using multi-path is proposed to support efficient connectionless service in ATM networks. Because the proposed scheme distributed the bursty traffic arrived in the interworking unit (IWU) and the connectionless server (CLS) from LAN-terminals, it alleviates the packet loss ratio caused by buffer overflow at IWU/CLS and is able to use nettowrk resources efficiently according to the network conditions and the amount of the traffic arrived at IWU/CLS. This paper presents the distribution algorithm and the IWU/CLS, CLS-CLS closed-loop rate control scheme.

  • PDF

Load Allocation Strategy for Command and Control Networks based on Interdependence Strength

  • Bo Chen;Guimei Pang;Zhengtao Xiang;Hang Tao;Yufeng Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2419-2435
    • /
    • 2023
  • Command and control networks(C2N) exhibit evident multi-network interdependencies owing to their complex hierarchical associations, interleaved communication links, and dynamic network changes. However, the existing command and control networks do not consider the effects of dependent nodes on the load distribution. Thus, we proposed a command and control networks load allocation strategy based on interdependence strength. First, a new measure of interdependence strength was proposed based on the edge betweenness, which was followed by proposing the inter-layer load allocation strategy based on the interdependence strength. Eventually, the simulation experiments of the aforementioned strategy were designed to analyze the network invulnerability with different initial load capacity parameters, allocation model parameters, and allocation strategies. The simulation indicates that the strategy proposed in this study improved the node survival rate of the interdependent command and control networks model and successfully prevented cascade failures.

The Comparison of Reliability for Change Single Loop Configuration in Radial Power Distribution System (수지상 배전계통을 단일루프로 구조 변경시 신뢰도 비교)

  • Lee, Hee-Tae;Kim, Jae-Chul;Kim, Ju-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1472-1478
    • /
    • 2009
  • The domestic power distribution system is operating in an open loop mode; however, it already has a loop structure. Power distribution systems must be changed for bi-directions power supply for smart networks due to a changing of paradigm in electric power industry. The simplest bi-directions distribution networks can make it closing of normally open switch. However, bi-directions power supply is very difficulty to be operated and there are many parts which it must study. This paper presented various models that are able to change a radial system for loop structures. Further, we compared the reliability index for each model by evaluating the amount of improvement reliability required in radial power distribution system. In addition, we calculated CIC(Customer Interruption Cost) for each model by comparing and analyzing.