• 제목/요약/키워드: Distribution line

검색결과 2,931건 처리시간 0.033초

배전선로 운전용량 상향에 따른 개폐기 설치 기준 분석 (Analysis of the Switch Installation Criteria by Increasing Operating Capacity in Distribution Line)

  • 조남훈;하복남;이흥호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권6호
    • /
    • pp.290-295
    • /
    • 2002
  • The present assignment in installing the number of switches for distribution line was made on the basis of a normal feeder capacity 7,000kVA in KEPCO(Korea Electric Power Corporation), Korea. But the normal capacity is revised to 10000kVA in 1998. Even increasing limit of the operating capacity of the distribution lines enables us to give some benefit for the operation flexibility and investment cost of the distribution system. It is disadvantageous in the viewpoint of supply reliability. In distribution systems, switches are equipped to improve the reliability of distribution systems by minimizing the outage section due to fault and maintenance. Utility generally improves the reliability by minimizing the length of outage section, which is caused by fault and maintenance, through switch equipment on distribution system. In order to cope with the changes such as operation capacity, it is necessary to study whether the present criteria is reasonable or not, also to confirm whether the present criteria of installing switches in line is improved or not. In this study, we proposes the number of switch per feeder on the basis of present operation capacity in distribution system.

3상회로의 직접해석에 의한 배전계통 선간단락 사고 고장거리 계산 알고리즘 (A new line to line fault location algorithm in distribution power networks using 3 phase direct analysis)

  • 진보건;최면송;이승재;윤남선;정병태;이덕수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.108-110
    • /
    • 2002
  • In this paper, a fault location algorithm is suggested for line to line faults in distribution networks. Conventional fault location algorithms use the symmetrical component transformation, a very useful tool for transmission network analysis. However, its application is restricted to balanced network only. Distribution networks are, in general, operated in unbalanced manners, therefore, conventional methods cannot be applied directly, which is the reason why there are few research results on fault location in distribution networks. Especially, the line to line fault is considered as a more difficult subject. The proposed algorithm uses direct 3-phase circuit analysis, which means it can be applied not only to balanced networks but also to unbalanced networks like distribution a network. The comparisons of simulation results between one of conventional methods and the suggested method are presented to show its effectiveness and accuracy.

  • PDF

배전계통 선로상태 파악을 위한 전문가 시스템 (Expert System for Line State Recognition of Distribution System)

  • 김윤동;최병윤;문영현;송경빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.111-114
    • /
    • 1988
  • With the increase of size and complicacy of power systems, distribution system need to operate effectively for high reliability. In order to achieve this purpose, the study which apply expert system to operating plan, restoration on fault and distribution system operating, has developing actively. The essential element of the study is system line state which make a system observe. The development of expert system on power system operation make a system be able to judge state of loading and looping system line, related current direction, substation, and distribution line, atomatically by breaker operation. Finally, this paper developed expert system which decides itself atomatically by rules for deciding system line state.

  • PDF

22.9kV 배전선로 절연전선의 부식 검출 시스템 개발에 대한 연구 (A Study on the Development of Corrosion Detecting System for 22.9 kV Distribution Power Line Insulation Cable)

  • 김용준;오용철;이건영
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1410-1416
    • /
    • 2011
  • A corrosion detecting system for 22.9 kV distribution power line insulation cable, which can travel autonomously along the live line, is proposed. Eddy current test method is employed to detect the corrosion, and the system developed here is capable of detecting internal corrosion of a ACSR-OC. Somewhat details of the electrical and mechanical mechanism of the system and traveling algorithm are introduced. Experimental results applied to the sample cables having artificial corrosion and the operating distribution lines are provided. From the result, we confirmed that the system is useful for detecting internal corrosion of a ACSR, and is expected to be a new non-destructive testing equipment in the area of diagnosis for the distribution power line.

초전도 한류기를 주변압기 접지선에 설치시 배전계통의 순간전압품질 분석 (Voltage Quality Analysis in Power Distribution System with Superconducting Fault Current Limiter at Grounding Line)

  • 문종필
    • 전기학회논문지P
    • /
    • 제62권4호
    • /
    • pp.159-163
    • /
    • 2013
  • In this paper, voltage quality improvement is analyzed in case of Superconducting Fault Current Limiter (SFCL) installed in grounding line of main transformer in power distribution system. First, a resistive-type SFCL model is used. Next, Korean power distribution system is modeled. Finally, when SFCL is installed in the starting point of feeder and grounding line of main transformer, voltage qualities are evaluated according to various fault locations and resistance values of SFCL using PSCAD/EMTDC. The voltage quality results in case of grounding line are compared with the voltage in case of feeder.

가공 배전선로 활선 정비 로봇 시스템의 기술 타당성 검토 (Technical Feasibility Study on Live-line Maintenance Robot System for Overhead Distribution Lines)

  • 박준영;이윤건;장영식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.49-53
    • /
    • 2022
  • The distribution live-line work method is an operation method of working in a state in which electricity flows through overhead distribution lines to minimize inconvenience to electric customers due to power failure. In June 2016, to strengthen the safety of electrical workers, Korea Electric Power Corporation announced that it would in principle abolish the rubber glove method, in which workers wore protective equipment such as rubber gloves and performed their maintenance work. In addition, KEPCO announced that it would develop a short-range live working method using smart sticks and an advanced live-line maintenance robot system where workers work without touching wires directly. This paper is a preliminary study for the development of the live-line maintenance robot system, and deals with the results of analyzing the technical feasibility of whether the live works performed by workers can be replaced by robots or not.

축소 모의된 22.9 kV-Y 배전선로의 유도 전압에 대한 신뢰성 검증 (Verification of Reliability by the Induced Voltage of a Downscaled and Simulated 22.9kV-Y Distribution Line)

  • 김점식;최충석
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.26-31
    • /
    • 2015
  • The purpose of this paper is to measure the induced voltage of the downscaled and simulated overhead ground wire of a 22.9kV-Y distribution line. This study performed a test of the downscaled and simulated distribution line according to whether it is grounded or not and the value of the ground resistance. In order to verify the reliability of the data measured by the test, the data was analyzed using the Minitab 17 program. It was found that the induced voltage of the downscaled and simulated distribution line is influenced by the value of the ground resistance. It was also found that the ground resistance obtained at a certain point is closely related to whether electric poles are grounded or not. The analysis results of the measured test data with a statistical method showed that the Anderson Darling (AD) was analyzed to be the smallest as 0.188 when the ground resistance of the electric poles had been maintained at $10{\Omega}$. In addition, the P value analyzed to be 0.894 which is in the proximity of the theoretical value of 1 and verified the reliability of the test data. It could be seen that the data measured by the downscaled simulation test forms a linear graph. It is thought that if a distribution line is installed in the same manner as the downscaled, simulated distribution line, the mean induced voltage will be reduced and reliability will be increased.

아몰포스선을 이용한 전력선의 자계분포 (Magnetic Field Distribution of Power Line Using Amorphous Wire)

  • Moriyama, T.;Cho, M.W.;Hikita, M.;Hong, J.W.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.609-612
    • /
    • 2001
  • To investigate the magnetic field distribution of power line, we used amorphous wire sensor. And we discuss extremely low frequency magnetic field distribution dependent upon arrangement of power line and shielding pipe made from iron or alumimum materials by both measurement and FEM(Finite Element Method) analysis. Appling current of single phase 60 [Hz] 15 [A] is supplied to copper wire coated enamel resign. As the results, we confirmed that linear characteristics of amorphous wire sensor is very excellent and measurement value agrees with FEM calculation. Magnetic field distribution due to shielding materials is changed by permeability and conductivity.

  • PDF

풍력발전단지가 연계된 배전계통에서의 보호방안 (A Protective Scheme for Wind Farm Interconnected to Distribution System)

  • 김경호;이종범;서재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.478-480
    • /
    • 2002
  • Wind energy can be conversed into electrical power using wind generator. Wind farm is made up of many wind generators, and it is often interconnected into distribution system to supply power for utilities. There are many protection problems on distribution system connected with Wind farm. It can effect on power quality severely when faults are occurred on distribution line or Wind farms. Therefore the correct protective scheme must be set for distribution system which has a Wind farm. In this paper, A wind farm connected into distribution line is simulated with several fault types which can be occurred on distribution line and Wind farm using PSCAD/EMTDC. And this paper proposes necessary relays to protect both sides of distribution system and wind farm.

  • PDF

풍력발전단지의 계통연계 운전이 배전선 보호계전에 미치는 영향 (Influence of the Interconnected Wind farm on Protection for Distribution Networks)

  • 장성일;김광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권3호
    • /
    • pp.151-157
    • /
    • 2003
  • Wind farm interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with wind fm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may be difficult to detect the fault happened in the distribution network connected with wind generator This paper describes the effect of the interconnected wind turbine generators on protective relaying of distribution power lines and detection of the fault occurred in a power line network. Simulation results shows that the current level of fault happened in the power line with wind farm depends on the fault impedance, the fault location. the output of wind farm. and the load condition of distribution network.