• 제목/요약/키워드: Distribution Transformer

검색결과 474건 처리시간 0.023초

콘덴서 제어회로를 이용한 배전용 변압기의 역률 개선에 관한 연구 (A Study for Improving the Power Factor of Distribution Transformer using Condenser Control Circuit)

  • 이광직
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.21-28
    • /
    • 2014
  • Daily use characteristics of apparent power supplied to distribution transformer can be separated into two different time zone of waking hours and sleeping hours. In sleeping hours, using amount of power is decreasing. The actual curve of power seemed to be quite similar to this kind of separation. Inserting a condenser into a circuit in each different time zone led to maximize power factor of the transformer. The compensating condenser's on/off time is controlled by hysteresis circuit utilizing op amp and power factor of the transformer was improved from 0.945 to 0.999. As a result, the average of current reduction was 2.53A per hour of transformer.

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet;Kim, In-Sung;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.671-676
    • /
    • 2011
  • A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.

직류 배전망 연계를 위한 3상 13.2kV급 반도체 변압기 시스템에 대한 연구 (A Study on the 3-phase 13.2 kV Solid State Transformer for the DC Distribution)

  • 정동근;윤혁진;박시호;김호성;김명호;류명효;백주원
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.315-324
    • /
    • 2021
  • A solid state transformer (SST) that can interface an MVAC of three-phase 13.2 kV and a 1.5 kV DC distribution. SST consists of an AC/DC converter and a DC/DC converter with a high-frequency isolation transformer (HFIT). The AC/DC converter consists of cascaded NPC full-bridge to cope with the MVAC. The DC/DC converter applies a quad active bridge (QAB) topology to reduce the number of the HFIT. Topology analysis and controller design for this specific structure are discussed. In addition, the insulation of HFIT used in DC/DC converters is considered. The discussion is validated using a 300 kVA three-phase SST prototype.

수용가 전력 소비 패턴을 고려한 배전용 변압기 과부하 판정기준 (Overload Criteria of Distribution Transformers Considering the Electric Consumption Patterns of Customers)

  • 윤상윤;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.513-520
    • /
    • 2004
  • In the paper, we summarize the result of the experimental research for the overload criteria of domestic distribution transformers considering the electric consumption patterns of customers. For the basic characteristic data of distribution transformer overload, the actual experiments are accomplished. The field data of loads are surveyed from sample transformers for analyzing the consumption pattern of customer load. The load data acquisition devices are equipped, and the algorithm of load pattern classification is applied. In addition to this efforts, various load pattern data. in past are gathered. Then the representative load pattern of each customer type in domestic is extracted. The final results of overload criterions are presented as tabular form through the results of experiments and survey are combined. The field test of the experiment results is peformed using the special manufactured transformers, which can measure both the load and top-oil temperature of transformer. Through this, we verify that the results of field test are similar to the laboratory one and the Proposed overload criteria can be effectively applied to the real system.

방열기를 갖는 유입자냉식 변압기의 온도분포 해석 (Ana1ysis of Temperature Distribution in Oil-immersed Self-cooled Transformer with Radiator)

  • 김중경;한성진;오연호;박경엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.755-756
    • /
    • 2006
  • This paper presents the temperature distribution of the oil-immersed self-cooled transformer with radiator performed by coupled magneto-fluid-thermal analysis. Particularly, 3D temperature distribution of cooling oil and sub-components under the natural convection is obtained by computational fluid dynamics analysis, while heat sources are predetermined by magnetic field analysis using F.E.M. The predicted temperature distribution of the power transformer model is compared with the measured data for verifying the validity of the proposed analysis.

  • PDF

다채널 무선 통신망을 이용한 배전용 변압기 진단 기법에 관한 연구 (A Study on the Diagnostic Technique for Distribution Transformers using Multi-Channel Wireless Communication Network)

  • 김재철;최준호;김동현;문종필;김언석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.131-139
    • /
    • 2001
  • As increasing the accident of Distribution Transformer (DT), we need to manage them efficiently. In this paper, we discusses with the possibility of the diagnostic technique for distribution transformer using relative ageing rate calculation in this paper. The relative ageing rate of the DT could be calculated from the measured top oil temperature, ambient temperature and load current. In order on apply the proposed diagnostic technique we developed an on line Monitoring and Diagnostic System (MDS) which has hardware and software part. Diagnostic device is developed to measure the state information of DT and to send them with R/F(radio frequency) communication. Host computer monitors and saves the receive data. The database is constructed from the data of distributed DT and it is used for estimating loss-of-life in the MDS.

  • PDF

양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구 (A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid)

  • 윤혁진;김명호;백주원;김주용;김희제
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

3차 권선을 고려한 단상 33MVA 고온초전도 변압기의 개념설계 (Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding)

  • 이승욱;김우석;한송엽;황영인;최경달
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.162-166
    • /
    • 2006
  • We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  • PDF

위상변환장치를 이용한 새로운 배전변압기 무정전 교체방법 (A New Replacement Method of Distribution Transformers without Outage using the Phase Converter)

  • 신동열;김숙철;윤기갑;차한주
    • 조명전기설비학회논문지
    • /
    • 제21권10호
    • /
    • pp.166-175
    • /
    • 2007
  • 전력 소비자들에 의한 전기품질 요구 수준이 날로 높아지고 있어 배전변압기 교체시 발생되는 정전에 의한 소비자들의 불편을 줄이기 위한 선진국형 무정전 배전변압기 교체방법이 요구되고 있다. 현재 시행되고 있는 주상변압기 무정전 교체공법은 변압기 이용률과 현장여건에 따라 1-2차를 고압 바이패스하는 방법이므로 작업공정이 불편하고, 편법작업에 의한 고장발생과 이에 따른 작업자 안전사고가 발생하는 문제점이 있어 새로운 무정전 교체방법이 절실히 요구되고 있다. 따라서 본 논문에서는 새로운 위상변환장치를 이용한 무정전 공법을 제안한다. 제안된 무정전 공법은 기존의 고압 바이패스 작업방법에 비해 작업공정을 줄이면서 안전하고 저렴한 방법으로 변압기 교체를 할 수 있다. 그러므로 본 논문에서 제시한 공법은 배전공사 원가 절감에 따른 전기요금 하락과 무정전 전력공급으로 국민생활에 편리함을 더하고 국가 경제 발전에 기여할 것으로 기대된다.

A Study on the Hot Spot Temperature in 154kV Power Transformers

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.312-319
    • /
    • 2012
  • The life of a power transformer is dependent on the life of the cellulose paper, which influenced by the hot spot temperature. Thus, the determination of the cellulose paper's life requires identifying the hot spot temperature of the transformer. Currently, however, the power transformer uses a heat run test is used in the factory test to measure top liquid temperature rise and average winding temperature rise, which is specified in its specification. The hot spot temperature is calculated by the winding resistance detected during the heat run test. This paper measures the hot spot temperature in the single-phase, 154kV, 15/20MVA power transformer by the optical fiber sensors and compares the value with the hot spot temperature calculated by the conventional heat run test in the factory test. To measure the hot spot temperature, ten optical fiber sensors were installed on both the high and low voltage winding; and the temperature distribution during the heat run test, three thermocouples were installed. The hot spot temperature shown in the heat run test was $92.6^{\circ}C$ on the low voltage winding. However, the hot spot temperature as measured by the optical fiber sensor appeared between turn 2 and turn 3 on the upper side of the low voltage winding, recording $105.9^{\circ}C$. The hot spot temperature of the low voltage winding as measured by the optical fiber sensor was $13.3^{\circ}C$ higher than the hot spot temperature calculated by the heat run test. Therefore, the hot spot factor (H) in IEC 60076-2 appeared to be 2.0.